SCALY BARK CREEK MITIGATION SITE Stanly County, NC DENR Contract 002030 EEP Project Number 94148

Baseline Monitoring Document and As-Built Baseline Report FINAL Data Collection Period: March-April 2011 Submission Date: July 15, 2011

NCDENR, EEP 1652 Mail Service Center Raleigh, NC 27699-1652

Prepared by:

Wildlands Engineering, Inc. 1430 S. Mint Street, #104 Charlotte, NC 28203 P – 704-332-7754 F – 704-332-3306 Kirsten Y. Gimbert kgimbert@wildlandsinc.com

SCALY BARK CREEK MITIGATION SITE Baseline Monitoring Document and As-Built Baseline Report

EXECL	ITIVE SUMMARYi
1.0	Project Goals, Background and Attributes1
1.1	Project Location and Setting 1
1.2	Project Goals and Objectives1
1.3	Project Structure, Restoration Type and Approach
1.3	Project History, Contacts and Attribute Data
2.0	Success Criteria 3
2.1	Hydrology 3
2.2	Morphological Parameters and Channel Stability
2.3	Vegetation 4
2.4	Photograph Reference Points 4
2.5	Schedule and Reporting4
3.0	Monitoring Plan5
3.1	Hydrology5
3.2	Stream5
3.3	Vegetation 6
3.4	Photograph Reference Points 7
4.0	Maintenance and Contingency Plans 7
4.1	Vegetation7
4.2	Stream7
5.0	As-Built Condition (Baseline)
5.1	As-Built/Record Drawings 8
5.2	Baseline Data Assessment8
9.0	References 11

APPENDICES

Appendix 1	General Tables and Figures
Figure 1	Project Vicinity Map
Figure 2	Project Component/Asset Map
Table 1	Project Components and Mitigation Credits
Table 2	Project Activity and Reporting History
Table 3	Project Contact Table
Table 4	Project Baseline Information and Attributes

Appendix 2 Morphological Summary Data and Plots

- Table 5a-b Baseline Stream Data Summary
- Morphology and Hydraulic Summary Longitudinal Profile Plots Table 6
- Figure 3a-d
- Figure 4a-I Cross-Section Plots

Figure 5a-j Reachwide and Cross-Section Pebble Count Plots

Stream Photographs

Appendix 3 Vegetation Plot Data

Table 7a-c	Planted and Total Stem Counts (Species by Plot with Annual Means)
Table 8	CVS Vegetation Tables – Metadata
Table 9	CVS Vegetation Tables – Vigor by Species
Table 10	CVS Vegetation Tables – Damage by Species
Table 11	CVS Vegetation Tables – Stem Count by Plot and Species
Vegetation Ph	otographs

Appendix 4 As-Built Plan Sheets

EXECUTIVE SUMMARY

The Scaly Bark Creek Mitigation Site, hereafter referred to as the Site, is located in rural Stanly County, southwest of Albemarle, NC, in the Yadkin River Basin (United States Geological Survey (USGS) Hydrologic Unit 03040105). The primary objectives of the project were to decrease nutrient and fecal coliform levels, sediment input, and water temperature, increase dissolved oxygen concentrations, create appropriate in-stream and terrestrial habitat, and decrease channel velocities. These objectives were achieved by restoring 4,875 linear feet (LF) of perennial stream channel, enhancing 3,587 LF of perennial and intermittent stream channel, and preserving 700 LF of intermittent stream channel. The Site's riparian areas were also planted to stabilize streambanks, improve habitat, and protect water quality.

Pre-Construction Site Conditions

The Site is located in the Carolina Slate Belt of the Piedmont Physiographic Province (USGS, 1998). Land use within the watershed is rural and is dominated by forestry, agriculture, and livestock operations; with approximately 60% of the watershed forested and 40% used for agriculture. The Site consists of Scaly Bark Creek, a third order stream, as well as six unnamed first and second order tributaries (UTs) to Scaly Bark Creek (UT1, UT1a, UT1b, UT2, UT3, and UT4). At the downstream limits of the project, the drainage area is 1,619 acres (2.5 square miles).

Prior to construction activities, the primary watershed stressor was the high sediment load received from the upstream watershed due to bank erosion and lack of erosion control during agricultural practices. Activities such as livestock trampling on the banks, vegetation maintenance and removal by the landowner, lack of riparian buffer to stabilize banks and filter runoff, and channel maintenance and straightening by the landowner, resulted in an unstable stream system. As a result of the aforementioned watershed and land activities, the Site had poor water quality due to sediment and fecal pollution, poor habitat due to lack of riparian vegetation and lack of in-stream bed diversity, and unstable geomorphic conditions. Table 5 in Appendix 2 presents the pre-restoration conditions in detail for the Site.

Restoration Approach and Implementation

The project site restoration plan restored a high quality of riparian function to the streams and riparian corridors on the Site. The ecological uplift can be summarized as starting from cattle-impacted streams and moving to stable channels in a protected riparian corridor. Restoration of dimension, pattern, and profile was implemented for Scaly Bark Creek, the lower portion of UT1, and UT2; enhancement of profile and dimension, working within the existing channel, was implemented for the remaining portion of UT1, UT1a, UT1b, UT3, and a portion of UT4. Figure 2 and Table 1 present the restoration and enhancement design for the Site.

The final restoration plan was submitted and accepted by the Ecosystem Enhancement Program (EEP) in May of 2010. Construction activities were completed by North State Environmental in April 2011. The baseline monitoring and as-built survey were

completed between March and April of 2011. There were no significant deviations reported in the project elements in comparison to the design plans. A few field changes were made based on field conditions during construction, including a slight alignment shift on the downstream 50 LF of UT3 and UT4 for a more stable tie-in to Scaly Bark Reach 1 and the replacement of some root wad structures with brush toe based on recent successes at other project sites. Appendix 1 provides more detailed project activity, history, contact information, and watershed/site background information for this project.

Monitoring

Baseline monitoring (Year 0 of 5) was conducted in March and April of 2011. The first annual monitoring assessment (Year 1 of 5) will be completed in the fall of 2011. The Site will be monitored for a total of five (5) years, with the final monitoring activities conducted in 2015 and the close-out in 2016. Monitoring will consist of collecting morphological, vegetative, and hydrological data on an annual basis to assess the project success based on the restoration goals and objectives. The success of the Site will be assessed using measurements of the stream channel's dimension, pattern, profile, substrate composition, permanent photographs, vegetation, and surface water hydrology. Any areas with identified high priority problems, such as streambank instability, aggradation/degradation, or lack of vegetation establishment will be evaluated on a caseby-case basis. The problem areas will be visually noted and remedial actions will be discussed with EEP staff to determine a plan of action. A proposal of work will be submitted if remediation of an area is required.

1.0 Project Goals, Background and Attributes

1.1 Project Location and Setting

The Site is located off of NC Highway 24/27 in the central portion of Stanly County, NC. The project site is approximately 2.6 miles southwest of downtown Albemarle, NC within the Rocky River watershed (North Carolina Division of Water Quality (NCDWQ) Subbasin 03-07-13) of the Yadkin River Basin (USGS Hydrologic Unit 03040105060030). The project is located in an active cattle pasture surrounded by wooded lots, small agricultural operations, and rural residential areas within a 212-acre tract of land owned by Franchot Palmer. A conservation easement has been recorded to protect the 26.6 acres of riparian corridor and stream resources in perpetuity. Scaly Bark Creek (NCDWQ Index No. 13-17-31-2), which is the main creek on the project site, has been classified as Class C waters. Class C waters are protected for secondary recreation, fishing, wildlife, fish and aquatic life propagation and survival, agriculture, and other uses. Directions and a map of the Site are provided in Figure 1.

1.2 Project Goals and Objectives

The following project goals were established to address the effects listed above in the executive summary from watershed and project site stressors:

- Remove harmful nutrients from creek flow, including fecal pollution;
- Reduce pollution of the creek by excess sediment;
- Increase dissolved oxygen concentrations;
- Improve stream bank stability;
- Improve in-stream habitat;
- Restore terrestrial habitat; and
- Improve aesthetics of the riparian corridor.

The project objectives to meet these goals are to:

- fence out cattle from the riparian corridor to remove fecal contamination and eliminate bank trampling;
- provide a floodplain for excess sediment to settle out while maintaining appropriate sediment transport through the design reach and eliminating sediment contributions from bank erosion in the project reaches;
- provide aeration points at riffle and drop structures to increase dissolved oxygen;
- provide riparian vegetation root mass to stabilize banks and to provide terrestrial habitat;
- construct a geomorphically stable, self-maintaining channel to provide for stable stream form;
- provide aquatic habitat bedform diversity in the form of riffles and pools, as well as terrestrial habitat with riparian planting; and
- provide channel shading to reduce water temperatures which will improve habitat quality and help to improve dissolved oxygen concentrations.

1.3 Project Structure, Restoration Type and Approach

1.3.1 Project Structure

Please refer to Figure 2 for the project component/asset map for the monitoring and restoration feature exhibits on Scaly Bark Creek and its tributaries and Table 1 for the project component and mitigation credit information.

1.3.2 Restoration Type and Approach

The project site restoration plan restored a high quality of riparian function to the streams and riparian corridors on the project site. The ecological uplift can be summarized as starting from cattle-impacted streams and moving to stable channels in a protected riparian corridor. Restoration of dimension, pattern, and profile was implemented for Scaly Bark Creek, the lower portion of UT1, and UT2; enhancement of profile and dimension, working within the existing channel, was implemented for the remaining portion of UT1, UT1a, UT1b, UT3, and a portion of UT4.

Scaly Bark Creek as well as sections of UT 1 and UT 2 were improved to provide a stable, protected aquatic and terrestrial habitat. A Rosgen Priority 1 type restoration was utilized to create a new stable, functional stream channel based on reference reach and sediment transport analysis. The channel beds were raised slightly and meandering channels were constructed with stable cross-sections. A Rosgen C channel type was constructed for Scaly Bark Creek and portions of UT1 and UT2 with width/depth ratios near 12, at the low end of the range for Rosgen C channels. The channel will be allowed to narrow over time as bank vegetation is established to approach a Rosgen E channel type. Gradual bank slopes of 2:1 were designed to provide adequate rooting area and stability for plant establishment. By using gradual bank slopes and keeping the top widths of the channels narrow, the width of the channel bottom will be effectively narrowed allowing for a minimal base flow and will improve in-stream habitat. Table 5 provides a summary of the design geomorphic values for the restoration reaches.

The remaining upstream portion of UT1 as well as UT1a, UT1b, UT3, and part of UT4 were enhanced by removing invasive species, permanently fencing out cattle, spot repairing bank erosion, enhancing bed form, and restoring a native riparian buffer. Log and boulder sill structures were utilized in these tributaries as needed in order to provide increased bed stabilization and in-stream habitat. However, few structures were needed due to the prevalence of shallow bedrock knick points in these channels. The uppermost reach of UT4 is stable and flows through a mature forest. This upper reach has been fenced out from cattle access and preserved.

As a final stage of construction, riparian stream buffers were planted and restored to the dominant natural plant community that exists within the project watershed. This natural community within and adjacent to the project easement was classified as Piedmont Bottomland Forest and was determined based on existing canopy and herbaceous species (Schafale and Weakley, 1990). Proposed plant and seed materials were placed on stream banks and bench areas as well as from the tops of banks out to the project easement limits.

These areas were planted with bare root trees, live stakes, and a seed mixture of permanent herbaceous vegetation ground cover.

A permanent seed mixture of native herbaceous and grass species was also to all disturbed areas within the project easement. The herbaceous seed mixture was chosen that would provide quick stabilization of constructed stream banks, benches, and side slopes. These species will also provide early habitat value through rapid growth of ground cover to the tops of banks and floodplain areas.

1.3 Project History, Contacts and Attribute Data

Scaly Bark Creek was restored by Wildlands Engineering, Inc. (WEI) through a full-delivery contract with NCEEP. Tables 2, 3, and 4 provide detailed information regarding the Project Activity and Reporting History, Project Contacts, and Project Baseline Information and Attributes.

2.0 Success Criteria

The stream restoration success criteria for the project site follows the approved success criteria presented in the EEP Mitigation Plan Template (version 2.0, 03/27/08) and the Stream Mitigation Guidelines issued in April 2003 by the United States Army Corps of Engineers (USACE) and NCDWQ. Annual monitoring and quarterly site visits will be conducted to assess the condition of the finished project. The preservation reach on UT4 will be documented through photographs only to verify that no significant degradational changes are occurring in the stream channel or riparian corridor. The stability of the enhancement reaches will also be documented through photographs and the vegetation of these reaches will be assigned specific success criteria listed in Section 2.2. The stream morphology, vegetation, and hydrology.

2.1 Hydrology

2.1.1 Streams

Stream hydrology attainment will be monitored in accordance to the USACE (2003) standards. At the end of the five (5) year monitoring period, two (2) or more bankfull events must occur in separate years within the restoration reach.

2.2 Morphological Parameters and Channel Stability

2.2.1 Dimension

Riffle cross-sections on the restoration reaches should be stable and should show little change in bankfull area, maximum depth ratio and width-to-depth ratio. Riffle cross-sections should fall within the parameters defined for channels of the appropriate Rosgen stream type. If any changes do occur, these changes will be evaluated to assess whether the stream channel is showing signs of instability. Indicators of instability include a vertically incising thalweg or eroding channel banks. Changes in the channel that indicate a movement toward stability or enhanced habitat include a decrease in the width-to-depth ratio in meandering channels or an increase in pool depth. Remedial action would not be taken if channel changes indicate a movement toward stability.

2.2.2 Pattern and Profile

Longitudinal profile data for the stream restoration reaches should show that the bedform features are remaining stable. The riffles should be steeper and shallower than the pools, while the pools should be deep with flat water surface slopes. The relative percentage of riffles and pools should not change significantly from the design parameters. Adjustments in length and slope of run and glide features are expected and will not be considered a sign of instability. The longitudinal profiles should show that the bank height ratios remains very near to 1.0 for all of the restoration reaches.

2.2.3 Substrate

Substrate materials in the restoration reaches should indicate a progression toward or the maintenance of coarser materials in the riffle features and smaller particles in the pool features.

2.2.4 Sediment Transport

The channels' subpavement should not illustrate an indication of a significant trend toward aggradation or degradation within the restored channels.

2.3 Vegetation

The final vegetative success criteria will be the survival of 260 planted stems per acre in the riparian corridor along restored and enhanced reaches at the end of year five (5) of the monitoring period. The interim measure of vegetative success for the Site will be the survival of at least 320 planted stems per acre at the end of year three (3) of the monitoring period. The extent of invasive species coverage will also be monitored and controlled as necessary.

2.4 Photograph Reference Points

Permanent reference photographs will provide qualitative visual assessments. Photographs should capture significant changes in the stream channel over the monitoring years.

2.5 Schedule and Reporting

Monitoring reports will be prepared in the fall of each year of monitoring and submitted to EEP. Based on the EEP Monitoring Report Template (version 1.2, 11/16/06), the monitoring reports will include the following:

- 1. Project background which includes project objectives, project structure, restoration type and approach, location and setting, history and background.
- 2. As-built topographic plans of major project elements including such items as grade control structures, vegetation plots, monitoring cross-sections, and crest gage.
- 3. Photographs showing views of the restored Site taken from fixed point stations.
- 4. Assessment of the stability of the project based on the cross-sections and longitudinal profile, where applicable.
- 5. Vegetative data as described above including the identification of any invasion by undesirable plant species.
- 6. A description of damage by animals or vandalism.
- 7. Maintenance issues and recommended remediation measures will be detailed and documented.

8. Wildlife observations.

3.0 Monitoring Plan

Monitoring reports will be prepared in the fall of each year of monitoring and submitted to EEP. These reports will be based on the EEP Monitoring Report Template (version 1.2, 11/16/06). Annual Monitoring will be conduction for the monitoring parameters as noted below for five (5) years following constructions, unless otherwise directed.

3.1 Hydrology

3.1.1 Streams

Three (3) crest gauges were installed within the Site on each of the following reaches: Scaly Bark Creek, UT1 Reach 2, and UT2 to monitor the occurrence of bankfull or greater flow events. The gauges will be monitored on a quarterly basis to record the high water mark on the crest gauge, reset gauges, and carry out necessary maintenance. Should gauge malfunction occur, observations of rack lines and deposition may serve to augment gauge observations.

3.2 Stream

In order to ensure the Site meets regulatory stream success criteria, stream dimension, pattern, and profile will be monitored annually for five (5) years for restoration reaches (Scaly Bark, UT1 Reach 2, and UT2). The enhancement reaches (UT1 Reach 1, UT1a, UT1b, UT3, and UT4) will be visually monitored for stream stability along the entire reaches. Geomorphic and stream assessments should be performed following guidelines outlined in the Stream Channel Reference Sites: An Illustrated Guide to Field Techniques (Harrelson et al., 1994), methodologies utilized in the Rosgen stream assessment and classification document (Rosgen, 1994 and 1996), and in the Stream Restoration a Natural Channel Design Handbook (Doll et al, 2003). Scaly Bark Creek's hydraulic and geomorphic data for existing condition, reference reaches, design, and asbuilt conditions are presented in Tables 5 and 6.

3.2.1 Dimension

A total of 12 permanent cross-sections were established with the Scaly Bark Mitigation Site to represent the restored reach stream types and capture the variability in the dimensional features along the reaches. Eight (8) cross-sections were established on Scaly Bark Creek's main channel; four (4) cross-sections (two (2) riffle and two (2) pool) were established on Reach 1 and four (4) cross-sections (two (2) riffle and two (2) pool) were established on Reach 2. Two (2) cross-sections were established on both UT1 Reach 2 and UT2 (one (1) riffle and one (1) pool).

Cross-sections were established approximately 20 bankfull width lengths apart or two (2) every 1000 LF, depending on the stream size. Permanent monuments have been established that are recoverable either through field identification or with the use of a GPS unit. Each assessment following the initial as-built survey will include re-surveying the same permanent cross-sections. Cross-section surveys will detail the stream, bank, and floodplain topography of the channel including, but not limited to top of bank, bankfull, breaks in slope, water's edge, and the channel thalweg. Reference photographs looking upstream and downstream at

each cross-section were taken with the as-built. Subsequent assessments following the initial as-built survey will capture the same reference photograph locations. Data will be processed in CAD and analyzed using RiverMorph and Microsoft Excel.

3.2.2 Pattern and Profile

Four (4) separate longitudinal profile will be conducted along Scaly Bark Creek Reach 1 (1886 LF) and Reach 2 (2220 LLF), UT1 Reach 2 (399 LF), and UT2 (380). The beginning and end of each longitudinal profile have been established that are recoverable either through field identification or with the use of a GPS unit. Each longitudinal profile survey following the initial as-built survey will include re-surveying the same profile. The location of bedform features, in-stream structures, water surface, bankfull, top of bank, and permanent benchmarks will be collected at each survey. Data will be processed in CAD and analyzed using RiverMorph and Microsoft Excel.

Stream pattern was assessed and ranges were defined for Scaly Bark Creek Reaches 1 and 2, UT1 Reach 2, and UT2. Stream pattern assessment will only be conducted in monitoring year five (5). Data will be processed in CAD and analyzed using Microsoft Excel.

3.2.3 Visual Assessment

Visual assessments will be conducted along all restoration, enhancement, and preservation reaches each year to obtain qualitative geomorphic data. Each visual assessment evaluation after the baseline survey will include re-evaluation along the same profile.

3.2.4 Bank Stability Assessment

The Bank Erodibility Hazard Index (BEHI) and Near Bank Stress (NBS) analysis will be conducted on all restoration, enhancement, and preservation reaches where this assessment was conducted in the existing conditions survey. The detailed information collected in this analysis will be used to assess the physical properties of the stream bank and to determine possible sources of bank erosion with respect to the stress associated with the velocity in that portion of the channel. The BEHI and NBS assessment will only be conducted in monitoring year five (5).

3.3 Vegetation

Planted woody vegetation will be monitored in accordance with the guidelines and procedures developed by the Carolina Vegetation Survey-NCEEP Level 2 Protocol (Lee et al., 2008) to monitor and assess the planted woody vegetation. A total of 29 vegetation plots were established within the project easement area using standard 10 meter by 10 meter vegetation monitoring plots. Plots were randomly established within planted portions of the stream restoration and enhancement areas to capture the heterogeneity of the designed vegetative communities. The plot corners have been marked and are recoverable either through field identification or with the use of a GPS unit. Reference photographs at the origin looking diagonally across the plot to the opposite corner were taken with the as-built. Subsequent assessments following baseline survey will capture the same reference photograph locations.

3.4 Photograph Reference Points

A total of 46 permanent photograph reference points were established within the project easement area. Permanent photographic reference points established along the stream and easement areas will be used to support the qualitative visual assessments for the annual monitoring and to qualitatively evaluate channel aggradation or degradation, bank erosion, and success of riparian vegetation. The photograph points have been marked and are recoverable either through field identification or with the use of a GPS unit. Photographs looking upstream and downstream at each photo point were taken with the as-built. Subsequent assessments following the baseline survey will capture the same reference photograph locations.

4.0 Maintenance and Contingency Plans

Any identified high priority problem areas, such as streambank instability, aggradation/degradation, or lack of vegetation establishment will be evaluated on a case-by-case basis. The problem areas will be visually noted and remedial actions will be discussed with NCEEP staff to determine a plan of action. A proposal of work will be submitted if remediation of an area is required.

4.1 Vegetation

Vegetative problem areas will be mapped and included in the Current Condition Plan View (CCPV) as part of the annual vegetation assessment. Vegetation problems areas may include planted vegetation not meeting success criteria, persistent invasive species, barren areas with little to no herbaceous cover, or grass suffocation/crowding of planted stems. Appropriate remedial actions will be determined with NCEEP correspondence. A proposal of work will be submitted if remediation of an area is required.

Prior to restoration, Chinese privet (*Ligustrum sinense*), the on-site dominant shrub species, along with sporadic occurrences of Lespedeza (*Lespedeza sp.*) were observed throughout the entire reaches of Scaly Bark Creek and UT2. Mechanical extraction of privet and lespedeza was performed in tandem with stream restoration activities. Long term management of these species with herbicide should be applied prior to the fruiting season of adjacent native shrubs and trees to avoid minimal damage.

4.2 Stream

Stream problem areas will be mapped and included in the CCPV as past of the annual stream assessment. Stream problems areas may include bank erosion, structure failure, beaver dams, aggradation/degradation, etc. Appropriate remedial actions will be determined with NCEEP correspondence. A proposal of work will be submitted if remediation of an area is required.

5.0 As-Built Condition (Baseline)

The Scaly Bark Creek Mitigation Site construction and as-built survey were completed during March and April 2011. The survey included locating the channel boundaries, structures, cross-sections, and monitoring features such as photo points, vegetation plots, and crest gauges. For comparison purposes, the baseline monitoring divided the reach assessments in the same way they were established for design parameters: Scaly Bark Creek Reach 1 and Reach 2, UT1 Reach 1 and Reach 2, UT1a, UT1b, UT2, UT3, and UT4.

5.1 As-Built/Record Drawings

A half size as-built plan is located in Appendix 4 with the pre-construction, design and postconstruction locations and alignments for the project. Field adjustments made to the design plans during construction include re-aligning the downstream 50 LF of UT3 and UT4 at its confluence with Scaly Bark Creek Reach 1 based on field conditions. A few habitat structures were exchanged, such as brush toe to replace some root wads, based on recent performance in other restoration projects. The following sections further detail field adjustments in comparison to the design plans.

5.2 Baseline Data Assessment

3.2.1 Morphological State of the Channel

Morphological data for the as-built profile was collected in March 2011. Please refer to Appendix 2 for summary data tables, morphological plots, and stream photographs.

Profile

The baseline (MY-0) profile numbers are closely matched to the design parameters. The plotted longitudinal profile and related summary data can be found in Appendix 2.

The center culvert in the Scaly Bark Creek crossing outside the conservation easement was lowered slightly to allow for a centered baseflow channel. Because of this field change, the next downstream riffle was also lowered slightly so that water would not back up into the culvert pipes.

Riffles were depicted as a straight line, consistent slope in the design profile with rock and log riffle features to be installed during construction for habitat variability. The as-built profile reflects the installation of log and rock sills with micro-pools interspersed in the riffle and thalweg deviations included.

During construction, pools were excavated deeper than the design profile at some locations. Deeper pools are generally considered to have better habitat characteristics. In some areas, due to the radius of curvature and length of bend, a few pools had to be excavated slightly shallower than the design profile indicated to allow for the point bar slope to smoothly tie into the pool excavation. Where a J-hook structure was used to set the tail of riffle elevation, a scour pool was typically excavated immediately downstream of the J-hook. This excavation shifted the deepest part of the pool closer to the upstream end of the pool, rather than closer to the apex of the pool as shown in the design profile.

The as-built range for pool-to-pool spacing differs from the design range summarized in the Restoration Plan report for a few reasons. The lower end of the design range was fulfilled by designing in-line pools at log sill structures to break up long riffles. These in-line pools were intended to be shallower than meander bend pools. During construction, different riffle and micro-pool habitats were selected based on field conditions. Many of these shallower pools were constructed, but only the deeper meander bend pools were used to calculate pool-to-pool spacing from the as-built survey data. At the upper end of the design range for pool-to-pool spacing, the apex-to-apex distance was measured in designing the channel profile within

the design range. During construction, the deepest part of the pool was excavated in some areas closer to the upstream portion of the pool when a scour hole was constructed downstream of a J-hook at tail of riffle, or the deepest part of the pool was excavated slightly downstream of the apex of a pool. These slight shifts of the deepest point in a pool have resulted in some pool-to-pool spacing measurements falling outside the design range. These shifts are not considered significant, and the design intent has still been fulfilled in the constructed conditions.

Dimension

The baseline (MY-0) dimension numbers are closely matched to the design parameters. Summary data and cross-section plots can be found in Appendix 2.

The main deviation from the design parameters is in the range of width to depth ratios. The design range for width to depth ratios was in the 10 to 11 range. As-built ratios reflect a range between 11.9 and 14.8, typically between 12 and 13. The top width of the channel was constructed slightly wider than the design typical sections to make bank slopes slightly less steep than 2:1. In recent construction projects, a bank slope less steep than 2:1 has proved to be more stable and more favorable for rooting plants. The width to depth ration still falls in the lower end of a Rosgen C channel range, which is consistent with the design intent for the channels on the site.

Pattern

The baseline (MY-0) radius of curvature and channel belt width numbers are similar to design objectives for all three (3) reaches. Pattern data will be completed in MY-5 if there are any indicators through the profile or dimensions that significant geomorphic adjustments have occurred.

In-stream structures such as root wads and brush toe were used to enhance channel habitat and stability on the outside bank of meander bends. During construction, areas where root wads had been designed were replaced with brush toe treatment because recent construction experience on other projects has shown than brush toe provides more effective bend protection. Brush toe was installed in outer banks adjacent to the apex of pools and not in banks corresponding to glide or run features. In some areas, large boulders or shallow bedrock was encountered at the outside of bends and so neither root wads nor brush toe could be installed.

Sediment Transport

Sediment transport data are reported in Table 5 in Appendix 2. As-built shear stresses are similar to design parameters and should reduce the risk of further erosion along all three restoration reaches.

3.2.2 Vegetation

The baseline monitoring (MY-0 of 5) vegetative survey was completed in April 2011. The baseline vegetation monitoring resulted in an average survivability of 810 stems per acre, which is greater than the design density required. There was an average of 20 stems per plot.

Please refer to Appendix 3 for vegetation summary tables, raw data tables, and vegetation plot photographs.

3.2.3 Photo Documentation

Permanent photographs locations were recorded using a sub-meter Trimble GPS. These photographs can be found in Appendix 2.

3.2.4 Hydrology

No bankfull events were recorded with the crest gauge during the baseline data gathering.

9.0 References

- Doll, B.A., Grabow, G.L., Hall, K.A., Halley, J., Harman, W.A., Jennings, G.D., and Wise, D.E., 2003. Stream Restoration A Natural Channel Design Handbook.
- Harrelson, Cheryl C; Rawlins, C.L.; Potyondy, John P. 1994. Stream Channel Reference Sites: An Illustrated Guide to Field Technique. Gen. Tech. Rep. RM-245. Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station. 61 p.
- Lee, Michael T., Peet, Robert K., Steven D., Wentworth, Thomas R. (2006). CVS-EEP Protocol for Recording Vegetation Version 4.0. Retrieved from http://www.nceep.net/business/monitoring/veg/datasheets.htm.
- Rosgen, D. L. 1994. A classification of natural rivers. Catena 22:169-199.
- Rosgen, D.L. 1996. Applied River Morphology. Pagosa Springs, CO: Wildland Hydrology Books.
- Rosgen, D.L. 1997. A Geomorphological Approach to Restoration of Incised Rivers. Proceedings of the Conference on Management of Landscapes Disturbed by Channel Incision. Center For Computational Hydroscience and Bioengineering, Oxford Campus, University of Mississippi, Pages 12-22.
- Schafale, M.P. and A.S. Weakley. 1990. Classification of the Natural Communities of North Carolina, 3rd approx. North Carolina Natural Heritage Program, Raleigh, North Carolina.
- Simon, A. 1989. A model of channel response in disturbed alluvial channels. *Earth Surface Processes and Landforms* 14(1):11-26.
- United States Department of Agriculture (USDA), 2009. Natural Resources Conservation Service, Soil Survey Geographic (SSURGO) database for Stanly County, North Carolina. http://SoilDataMart.nrcs.usda.gov
- United States Geological Survey (USGS), 1998. North Carolina Geology. http:// http://www.geology.enr.state.nc.us/usgs/carolina.htm
- Weakley, A.S. 2008. Flora of the Carolinas, Virginia, Georgia, Northern Florida, and Surrounding Areas (Draft April 2008). University of North Carolina at Chapel Hill: Chapel Hill, NC.
- Wildlands Engineering, Inc (2010). Scaly Bark Mitigation Site Restoration Plan. NCEEP, Raleigh, NC.

APPENDIX 1. General Tables and Figures

1,000 2,000 Feet

0

Figure 1. Vicinity Map Scaly Bark Creek Mitigation Site EEP Project Number 94148 Monitoring Year 0 of 5

Stanly County, NC

0 250 500 Feet

Figure 2. Project Component/Asset Map Scaly Bark Creek Mitigation Site t EEP Project Number 94148 Monitoring Year 0 of 5

Stanly County, NC

Appendix 1. General Tables and Figures Table 1. Project Components and Mitigation Credits Scaly Bark Creek Mitigation Site (EEP Project No.94148) Monitoring Year 0 of 5

				Mitigat	ion Credits				
_	Stre	eam	Ripariar	n Wetland	Non-Ripari	an Wetland	Buffer	Nitrogen Nutrient Offet	Phosphorous Nutrient Offset
Туре	R	RE	R	RE	R	RE		NY (4	XX /A
Iotais	4,875	1,575	N/A	N/A	N/A	N/A		N/A	N/A
				Project (Components				
Rea	ach ID	Stationing/ Location	Exisitng Footage (LF)	Approach	Restoration o	or Restoration	Restorat	tion Footage (LF)	Mitigation Ratio
Scaly Bark C Reaches 1 &	reek 2	100+00.00- 141+71.79	3,600	Priority 1	Resto	ration	2	4,058	1:1
UT1 Reach 1		213+10.37- 217+32.36	330	Priority 1	Resto	ration		422	1:1
UT1 Reach 2		200+00.00- 211+10.37	1,104	spot grading and planting	Enhance	ement II	1	1,104	2.5:1
UT1a		302+78.00- 306+68.00	390	spot grading and planting	Enhance	ement II		390	2.5:1
UT1b		400+10.00- 412+08.00	1,198	spot grading and planting	Enhance	ement II	1	1,198	2.5:1
UT2		500+00.00- 503+93.00	262	Priority 1	Resto	ration		414	1:1
UT3		600+00.00- 603+26.00	282	spot grading and planting	Enhance	ement II		341	2.5:1
UT4		707+00.00- 712+69.00	516	spot grading and planting	Enhance	ement II		583	2.5:1
UT4		700+00.00- 707+00.00	700	spot grading and planting	Preser	vation		700	5:1
				Compone	nt Summation				
		Ster		1		Non Dinorio	o Watland	Puffor	Lipland
Pectora	tion Lovel	Stre (linea	r foot)	Piparian Wet	land (acres)	Non-Ripanai		builer (square feet)	(acres)
Restora		(แก่ยัง	neet)	Riverine	Non-Riverine	(acie	;5)	(Square reet)	(acres)
Rest	oration	4.8	375	-	-	-	-	-	-
Enhar	ncement	.,.		-	_	-	-	-	-
Enhan	cement I		-						
Enhan	cement II	3.5	587						
Cre	eation	- /-		-	-	-			
Prese	ervation	70	00	-	-	-			-
High Quality	Preservation		-	-	-	-			-
				BMP	Elements				
Ele	ments	Loca	ation	Purpose	/Function			Notes	
-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-
-	-	-	-	-	-	-	-	-	-
BMP Eleme BR = Biorete	<u>nts</u> ention Cell; S F	= Sand Filter:	SW = Stormw	vater Wetland: V	NDP = Wet De	tention Pond: I	DDP = Drv	Detention Pond	l; FS = Filter

Strip; S = Grassed Swale; LS = Level Spreader; NI = Natural Infiltration Area; FB = Forested Buffer

Appendix 1. General Tables and Figures Table 2. Project Activity and Reporting History Scaly Bark Creek Mitigation Site (EEP Project No.94148) Monitoring Year 0 of 5

	Date Collection	
Activity or Report	Complete	Completion or Delivery
Mitigation Plan	May 2010	May 2010
Final Design - Construction Plans	Dec 2010	Dec 2010
Construction	April 2011	April 2011
Temporary S&E mix applied to entire project area*	April 2011	April 2011
Permanent seed mix applied to reach/segments	April 2011	April 2011
Containerized and B&B plantings for reach/segments	April 2011	April 2011
Baseline Monitoring Document (Year 0 Monitoring - baseline)	March 2011/April 2011	June 2011
Year 1 Monitoring	Sept 2011	Dec 2011
Year 2 Monitoring	2012	Dec 2012
Year 3 Monitoring	2013	Dec 2013
Year 4 Monitoring	2014	Dec 2014
Year 5 Monitoring	2015	Dec 2015

*Seed and mulch is added as each section of construction is completed.

Appendix 1. General Tables and Figures Table 3. Project Contact Table Scaly Bark Creek Mitigation Site (EEP Project No.94148) Monitoring Year 0 of 5

Designer	Wildlands Engineering, Inc.
	1430 South Mint Street, Suite 104
	Charlotte, NC 28203
Shawn Wilkerson	704.332.7754
Construction Contractor	North State Environmental, Inc.
	2889 Lowery Street
	Winston-Salem, NC 27101
Darrell Westmoreland	704.336.725.2010
Planting Contractor	North State Environmental, Inc.
	2889 Lowery Street
	Winston-Salem, NC 27101
Stephen Joyce	704.336.725.2010
Seeding Contractor	North State Environmental, Inc.
	2889 Lowery Street
	Winston-Salem, NC 27101
Stephen Joyce	704.336.725.2010
Seed Mix Sources	Green Resource
Nursery Stock Suppliers	
Bare Roots	Dykes and Son Nursery
Plugs	Pinelands Nursery
Live Stakes/Brush Mattress	North State Environmental, Inc.
Monitoring Performers	Wildlands Engineering, Inc.
Stream Monitoring, POC	Kirsten Y. Gimbert
Vegetation Monitoring, POC	704.332.7754, ext. 110

Appendix 1. General Tables and Figures Table 4. Project Baseline Information and Attributes Scaly Bark Creek Mitigation Site (EEP Project No.94148) Monitoring Year 0 of 5

	Project Info	ormation											
Project Name		Sc	aly Bark Cree	k Mitigation Si	te								
County			Sta	anly									
Project Area (acres)			20	5.6									
Project Coordinates (latitude and longitude)		35°	19' 38.338" N	, 80° 14' 19.315	"W								
	Project Watershed Su	mmary Information											
Physiographic Province			Pied	mont									
River Basin			Ya	dkin									
USGS Hydrologic Unit 8-digit 03040105	USGS Hydrologic Unit	14-diait			0304010)5060030							
DWQ Sub-basin	Rockv River (03-07-13)												
Project Drainiage Area (acres)	1,619												
Project Drainage Area Percentage of Impervious Area	Scalv Bar	k Creek: 27%, UT1: 33	%. UT1a: 2%	.UT1b: 13%.	UT2: 4%, UT3:	0%, UT4: 0%							
CGIA Land Use Classification			1	U			-						
	Reach Summary Information												
Parameters	Scaly Bark Creek	UT1	UT1a	UT1b	UT2	UT3	UT4						
Length of reach (linear feet) - Post-Restoration	4.058	1.526	390	1.198	414	341	583						
Valley classification	.,	-,	V	III									
Drainage area (acres)	1.619	173	46	83	436	36	25						
NCDWQ stream identification score	43.5	31	21.5	26.5	37.5	19.5	24						
NCDWQ Water Quality Classification	C	-	_	-	-	-	-						
Morphological Desription (stream type)	C4	Reach1: E4 Reach 2: C4	E4	C4b	C4	C4	Reach 1: B4 Reach 2: C4						
Evolutionary trend (Simon's Model) - Pre- Restoration	Reach 1: Stage 2 Reach 2: Stage 3, 4 & 5	Reach 2: Stage 2 & 4	n/a	n/a	Stage 4	n/a	n/a						
Underlying mapped soils	BaB BaD B	hR & BhD	Gol	C GoF	KkB	MhB	0a						
	Bub, Bub, b	<i>bb</i> & <i>bbb</i>	600	, 001	KAD	moderate to	Ou						
Drainage class	well dr	ained	well-drained dr	l to excessively ained	moderately well drained	moderately rapid	moderately well- drained						
Soil Hydric status	Ne	0		No	No	No	Yes (inclusions)						
Slope	gently sloping to	steep uplands	gently slop slo	ing to strongly oping	lower slopes	nearly level to gently sloping	nearly level						
FEMA classification		Zone AE (downstream e	end of Scaly Ba	rk only); all other	areas were not ma	apped							
Native vegetation community			Piedmont Bot	tomland Forest		11							
Percent composition of exotic invasive vegetation - Post-Restoration			C	%									
	Regulatory Cor	nsiderations											
Regulation	Applicable?	Re	solved?		Suppo	orting Docum	entation						
Waters of the United States - Section 404	Yes		Yes		USACE Natio	nwide Permit N	o.27 and DWO						
Waters of the United States - Section 401	Yes		Yes		401 Water Qua	ality Certification	on No. 3689						
					Scaly Bark Mi	tigation Plan; st	udies found						
Endangered Species Act	Yes		Yes		suitable habita	t not present for	r listed species						
Historic Preservation Act	Yes		Yes		No historic res impacted (lette	ources were for er from SHPO)	and to be						
Coastal Zone Management Act (CZMA)/Coastal Area Management Act		Ì			1	,							
(CAMA)	No		n/a			n/a							
FEMA Floodplain Compliance	Yes		Yes	(CLOMR approv	ved							
Essential Fisheries Habitat	Yes		Yes		No adverse im found (letter fr	pacts to aquatic	resources were						
	100	1	100		Louis (letter II	5							

U= Unknown

APPENDIX 2. Morphological Summary and Data Plots

Appendix 2. Morphological Summary Data and Plots Table 5a. Baseline Stream Data Summary Scaly Bark Creek Mitigation Site (EEP Project No. 94148) Scaly Bark Creek Reaches 1 and 2 Monitoring Year 0 of 5

			R	Region	al Cur	ve		Pre-Restora	tion Co	ndition		F	Reference	Reach Dat	a			Design			As-Built/Baseline						
Parameter	Gauge	F	Reach	1		Reach 2		Reach 1	Re	ach 2	UT to Ro	ocky Creek	Spence	r Creek 1	Spencer Creek 2		Rea	Reach 1		Reach 2		Reach '	1		Reach 2	<u>!</u>	
		LL	UL	Eq.	LL	UL	Eq.	Min Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Med	Max	Min	Med	Max	
Dimension and Substrate - Riffle	-			_	-																-		-				
Bankfull Width (ft)							27.6	17.0	23.9	1	12.2	8	8.7	10.7	11.2	17	7.0	20	0.0	17.9	18.1	18.3	21.2	21.3	21.4	
Floodprone Width (ft)							87.0	111.0	112.0	7	72.0	22	29.0	60.0	114+	37	7+	44	+	200+	200+	200+	200+	200+	200+	
Bankfull Mean Deptl	1							1.0	1.6	2.0		1.3	1	1.2	1.6	1.8	1.	.6	1.	.8	1.4	1.4	1.4	1.6	1.7	1.7	
Bankfull Max Deptl	1							2.6	2.8	3.0		1.8	1	1.9	2.1	2.6	2.	.3	2.	.5	2.2	2.2	2.2	2.3	2.4	2.6	
Bankfull Cross-sectional Area (ft ²) n/a							26.3	33.2	39.0	1	6.3	1	0.6	17.8	19.7	27	7.1	36	.3	24.6	25.2	25.8	34.3	35.6	36.8	
Width/Depth Ratio)			_				29.0	10.6	12.0		9.1		7.3	5.8	7.1	10).7	11	.0	13.0	13.0	13.0	12.2	12.8	13.3	
Entrenchment Ratio)							3.1	4.7	6.5		6.0	2	6.3	5.5	10.2	2.2	2+	2.2	2+	2.2+	2.2+	2.2+	2.2+	2.2+	2.2+	
Bank Height Ratio								1.0	1.0	1.0		1.0		1.0		0	1.	.0	1.	.0	1.0	1.0	1.0	1.0	1.0	1.0	
Drofile)							57.8	56.9	53.7	2	22.6	8	5.0	8	5.8											
Pione Diffic Langth (ft								7 (min)	22 (max)	,	N/D		J/D		I/D	20	52	10	62	17	25	55	20	40	60	
Riffle Slope (#/ff	<u>)</u>			-				0.0180 0.0260	-22 (max)	0.0490	0.0606	N/P 0.0802	0.0100	N/P 0.0670	1	130	20	32	0.0069	0.0203	1/	35	0.0283	30	49	0.0199	
Pool Length (ff	<u>/</u>							0.0180 0.0200	- 184 (m	x)	0.0000	0.0892	0.0100	J/D	0.0	1/D	30	8/	42	81	37	62	0.0283	0.0025	67	0.0188	
Pool Max Depth (ft	n/a							2.26 2.85	2 22	3 31	1	2.2	1	2.5	1	3	3.5	4.5	40	5.5	34	4.3	6.1	3.6	4.6	55	
Pool Spacing (ft)	/ *							31 62	45	117	26	81	13	47	,	71	38	114	45	132	71	104	165	92	119	147	
Pool Volume (ff ³	<u>,</u>							51 02		117	20	-	10	-		-		-			71	104	105	72	117	147	
Pattern	/																										
Channel Beltwidth (ft)							52	54	69			24	52	38	41	60	120	80	140	60	-	120	80	-	140	
Radius of Curvature (ft)							43 93	15	146	1		5	22	11	15	35	50	40	60	35	-	50	40	-	60	
Rc:Bankfull Width (ft/ft) n/a							1.6 3.4	0.9	6.1	1 :	n/a	0.6	2.5	1.3	1.4	2.1	2.9	2.0	3.0	2.1	-	2.9	2.0	-	3.0	
Meander Wave Length (ft)							81 163	60	190	1		54	196	46	48	125	160	160	200	125	-	160	160	-	200	
Meander Width Ratio)							1.9	2.9	3.2	1		2.8	6	3.4	3.6	3.5	7.1	4.0	7.0	3.5	-	7.1	4.0	-	7.0	
Substrate, Bed and Transport Parameters					•				•																		
Ri%/Ru%/P%/G%/S%	ò																										
SC%/Sa%/G%/C%/B%/Be%	ò																										
d16/d35/d50/d84/d95/d100) n/a							0.9/13.7/35.9/	101.2/172.	5/>2048	< 0.063/2.4	/22.6/120/256	0.1/3/8	.6/77/180	< 0.062/3	/8.8/42/90					SC/SC/	5.78/71.7/	/137/362	SC/7.6	21.5/83.2/1	51.8/362	
Reach Shear Stress (Competency) lb/ft	2 11/a							0.47	0.5	0-0.55							0.:	56	0.5	59	0.50	-	0.51	0.43	-	0.45	
Max part size (mm) mobilized at bankful	1							30-40	() () () () () () () () () ()	0-40							30	40	40	50	38	-	40	30	-	35	
Stream Power (Capacity) W/m	2																										
Additional Reach Parameters				-																							
Drainage Area (SM)							1.09 1.65	2.38	2.53	1	.10	0	.50	0	.96											
Impervious Cover Estimate (%)								27%		1	N/P	Ν	N/P	Ν	I/P											
Rosgen Classification	1							C4	_	C4	I	E4b	E3	3/C4	1	34	C	4	C	4		C4			C4		
Bankfull Velocity (fps)	-	-	-	-	-	-	3.8	3.8	4.5							3.	.7	4.	.1		3.7			4.1		
Bankfull Discharge (cfs)	95	128	-	167	174	-		_			85		- 97		97	10	00	15	50							
Q-NFF regression	n			_				192		259							_										
Q-USGS extrapolation	n n/a			_				87 162	123	221							_										
Q-Manning	s			_				80	85	96	-		-				-										
Valley Length (ft)							1480		2003	1	N/P	Ν	N/P N/P		I/P	14	-80	20	03							
Channel Thalweg Length (ft	<u>)</u>				-				3600	1.0	1	N/P	N	N/P N/P		I/P		40	4060			1886			2220		
Sinuosity (ft	<u>)</u>				-			1.1	0.002/	1.0		N/P	N/P N/P		N/P		N/P 1.2		1.2		1.2 1.3				1.1		
water Surface Slope (ff/ff	<u>/</u>							0.008/	0.0025	0.0051	1	N/P	1	N/P		//P	0.0067		0.00	0.0053 0.0067		.0007 0.004		0.0049			
Bankfull Slope (ft/ft)							0.00568 (min) - 0.0094	(max)	1	N/P	N/P N/P		I/P	0.0	0.0064		0.0056		0.0067		0.0050				

N/P: Data was not provided

*Design P:P spacing reported in the Restoration Plan included in-line pools, which are considered a habitat quality rather than a stability parameter, for evaluating for a channels profile stability. Subsequent monitoring years will evaluate pool Dmax for spacing.

Appendix 2. Morphological Summary Data and Plots Table 5b. Baseline Stream Data Summary Scaly Bark Creek Mitigation Site (EEP Project No. 94148) UT1 Reach 2 and UT2 Monitoring Year 0 of 5

			Re	gional Cu	irve		Pre-Restorati	on Condition	ï		R	eference	Reach Dat	ta			Design				As-Built/Baseline				
				<u> </u>												UT1 F	Reach	ľ							
Parameter	Gauge	U	T1 Reach	12	UT2		UT1 Reach 2	ι ι	JT2	UT to Ro	cky Creek	Spence	r Creek 1	Spencer	Creek 2	1	2	UT	2	U	T1 Reach	2		UT2	
		LL	UL	Eq. LI	UL E	q. Mi	n Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	Min	Med	Max	Min	Med	Max
Dimension and Substrate - Riffle									•	_			•												
Bankfull Width (ff)						10.6		13.3	1	2.2	8	8.7	10.7	11.2	11	1.0	12	.0		12.1			13.0	
Floodprone Width (ft)						78.0		94.0	7	2.0	22	29.0	60.0	114+	24	4+	26	+		200+			200+	
Bankfull Mean Depth	1						1.1		1.0		1.3	1	1.2	1.6	1.8	1	.1	1.	1		1.0			0.9	
Bankfull Max Depth	1						1.6		1.8		1.8	1	1.9	2.1	2.6	1	.5	1.	5		1.7			1.5	
Bankfull Cross-sectional Area (ft ²	n/a						12.0		13.0	1	6.3	1	0.6	17.8	19.7	12	2.0	13	.5		12.4			11.4	
Width/Depth Ratio)						9.4		13.6		9.1	7	7.3	5.8	7.1	10).1	10	.7		11.9			14.8	
Entrenchment Ratio)						7.3		7.1		5.0	2	6.3	5.5	10.2	2.	2+	2.2	2+		2.2+			2.2+	
Bank Height Ratio							1.3		1.2		1.0	1	1.0	1.	0	1	.0	1.	0		1.0			1.0	
D50 (mm)						27.3		55.6	2	2.6	8	8.6	8.	8										
Profile										-				-											
Riffle Length (ft)					5	32	6	23	1	N/P	Ν	N/P	N/	Р	29	42	23	37	11	30	41	21	29	41
Riffle Slope (ft/ft)					0.00	50 0.0250	0.0137	0.0740	0.0606	0.0892	0.0100	0.0670	0.01	30	0.0153	0.0245	0.0162	0.0281	0.0150	0.0187	0.0233	0.0215	0.0230	0.0272
Pool Length (ft) n/a					37	61	26	40	1	N/P	Ν	N/P	N/	Р	14	39	20	44	21	30	43	27	31	37
Pool Max Depth (ft))					1.3	6 1.87	1.71	2.07	2	20	2	2.50	3.3	0	2.3	3.5	2.2	3.5	2.5	3.3	4.0	2.9	3.1	3.5
Pool Spacing (ft)	*					75	88	48	90	26	81	13	47	7:		17	55	18	60	55	59	77	55	59	70
Pool Volume (ft ²))																								
Pattern			- T - T				20	-	28	1		24	50	20	41	50		50	00	50		00	50		00
Channel Beltwidth (ft)					22	20	22	28	_		24	52	38	41	50	80	50	80	50	-	80	50	-	80
	<u>n</u> /0					22		23	67	-	2/0	3	22	11	13	23	20	23	28	23	-	2.0	23	-	29
Rc:Banktull Width (ft/ft) 11/a		+ +				/.8	1.7	0.7	-	1/ d	5.0	2.3	1.5	1.4	2.5	5.0	2.1	2.8	2.5	-	5.0	2.1	-	120
Meander Width Patie)					4.3	19	39	2.1	-		2.8	60	3.4	3.6	4.5	7.3	90 4.2	67	4.5	-	7.3	90 4.2	-	6.7
Substrate Bed and Transport Parameters	<u>'</u>						1.9		2.1			2.0	0.0	5.4	5.0	ч.5	1.5	7.2	0.7	ч.5	-	1.5	7.2	-	0.7
Ri%/Ru%/P%/G%/S%	1																	ſ							
SC%/Sa%/G%/C%/B%/Be%																									
d16/d35/d50/d84/d95/d100	1.					#N/A/0	.9/27.3/94.6/158.4/>2048	16.0/30/55.6/	128/164.4/>2048	< 0.063/2.4	22.6/120/256	0.1/3/8	.6/77/180	< 0.062/3/8	3.8/42/90					0.025/16/	/37.24/104.7/	157.1/362	SC/8.8	/16.9/75.9/	152/512
Reach Shear Stress (Competency) lb/ft	2 n/a						0.7	(0.52							0.	61	0.6	57		0.55			0.68	
Max part size (mm) mobilized at bankful	1						50-60	3	0-40							40	50	50	60		40			50	
Stream Power (Capacity) W/m	2												•												
Additional Reach Parameters	•					÷		•		•		•				•				-			•		
Drainage Area (SM)						0.47	().68	1	.10	0	0.50	0.9	6										
Impervious Cover Estimate (%))						33%		4%	I	N/P	Ν	N/P	N/	Р										
Rosgen Classification	ı						E4		C4	I	E4b	E3	3/C4	E	4	C	24	C	4		C4			C4	
Bankfull Velocity (fps)	-	-				4.2		3.8							4	.2	3.	7		4.2			3.7	
Bankfull Discharge (cfs)		52		67		50		50		85		-	9	7	5	0	50)						
Q-NFF regression	1						79		103																
Q-USGS extrapolation	n n/a					42	85	31	65																
Q-Manning	8						47		52																
Valley Length (ft)		+ +				358		356		N/P	N .	N/P	N/	Р Р	3:	58	35	6		200			000	
Channel Thalweg Length (ft)						330		262		N/P	N	N/P	N/	P P	4	1	39	1		399			380	
Woter Surface Store (ft/ft/	<u>,</u>						1.0	-	1.1	,	N/P	N	N/P	N/	Г D	1	.1	1.	1		1.1			1.1	
water Sufface Slope (ft/ft	,						0.0130	0.	0109	, i	N/F		N/F	IN/	r D	0.0	107	0.01	16		0.0101			0.0121	
Baikiuli Slope (1/1)	/						0.0119	0.	01//	1	N/ 1	Г	N/ 1	IN/	1	0.0	071	0.01	0110		0.0094		1	0.0150	

N/P: Data was not provided *Design P:P spacing reported in the Restoration Plan included in-line pools, which are considered a habitat quality rather than a stability parameter, for evaluating for a channels profile stability. Subsequent monitoring years will evaluate pool Dmax for spacing.

Appendix 2. Morphological Summary Data and Plots Table 6. Morphology and Hydraulic Monitoring Summary (Dimensional Parameters - Cross-Section) Scaly Bark Creek Mitigation Site (EEP Project No. 94148) Scaly Bark Creek Reaches 1 and 2, UT1 Reach 2, and UT2 Monitoring Year 0 of 5

											Sc	caly Bar	k Reach	า1										
		Cros	ss-Sect	ion 1 (F	Pool)			Cros	s-Secti	on 2 (R	iffle)			Cros	s-Secti	on 3 (R	iffle)			Cros	ss-Secti	on 4 (P	ool)	
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5
based on fixed bankfull elevation																								
Bankfull Width (ft)	21.13						17.86						18.29						24.12			1	1	
Floodprone Width (ft)	n/a						200+						200+						n/a					
Bankfull Mean Depth (ft)	1.83						1.38						1.41						1.87					
Bankfull Max Depth (ft)	3.48						2.20						2.20						3.67					
Bankfull Cross-Sectional Area (ft ²)	38.63						24.64						25.82						45.17			1	1	
Bankfull Width/Depth Ratio	11.55						12.95						12.95						12.88			1	1	
Bankfull Entrenchment Ratio	n/a						2.2+						2.2+						n/a			1	1	
Bankfull Bank Height Ratio	1.00						1.00						1.00						1.00			Ì	Ì	
d50 (mm)							26.89						29.62									Ì	Ì	
											So	caly Bar	'k Reach	1 2										
		Cros	ss-Sect	ion 5 (F	Pool)			Cros	s-Secti	on 6 (R	iffle)			Cros	ss-Secti	ion 7 (F	Pool)			Cros	s-Secti	on 8 (R	iffle)	
based on fixed bankfull elevation	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5
Bankfull Width (ft)	26.64						21.35						24.73						21.2					
Floodprone Width (ft)	n/a						200+						n/a						200+					
Bankfull Mean Depth (ft)	1.96						1.61						1.95						1.74			1	1	
Bankfull Max Depth (ft)	4.63						2.27						3.9						2.6			I	I	
Bankfull Cross-Sectional Area (ft ²)	52.24						34.33						48.29						36.79			ł	ł	
Bankfull Width/Depth Ratio	13.58						13.28						12.67						12.22			i'	i'	
Bankfull Entrenchment Ratio	n/a						2.2+						n/a						2.2+					
Bankfull Bank Height Ratio	1.00						1.00						1.00						1.00			Ì	Ì	
d50 (mm)							45												23			1	1	
						UT1 R	each 2											U	T2					
		Cros	ss-Sect	ion 9 (F	Pool)			Cross	s-Sectio	on 10 (F	Riffle)			Cros	s-Section	on 11 (Pool)			Cross	s-Sectio	n 12 (F	liffle)	
Dimension and Substrate	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5	Base	MY1	MY2	MY3	MY4	MY5
based on fixed bankfull elevation																								
Bankfull Width (ft)	18.21						12.14						15.38						12.99					
Floodprone Width (ft)	n/a						200+						n/a						200+					
Bankfull Mean Depth (ft)	1.53						1.02						1.51						0.88					
Bankfull Max Depth (ft)	3.26						1.73						2.90						1.46					
Bankfull Cross-Sectional Area (ft ²)	27.95						12.39						23.28						11.40					
Bankfull Width/Depth Ratio	11.87						11.89						10.16						14.82					
Bankfull Entrenchment Ratio	n/a						2.2+						n/a						2.2+					
Bankfull Bank Height Ratio	1.00						1.00						1.00						1.00					
d50 (mm)							48												35			1	1	

Appendix 2. Morphological Summary Data and Plots Figure 3a. Longitudinal Profile Plots Scaly Bark Creek Mitigation Site (EEP Project No. 94148) Scaly Bark Creek Reach 1 Monitoring Year 0 of 5

Appendix 2. Morphological Summary Data and Plots Figure 3b. Longitudinal Profile Plots Scaly Bark Creek Mitigation Site (EEP Project No. 94148) Scaly Bark Reach 2 Monitoring Year 0 of 5

Appendix 2. Morphological Summary Data and Plots Figure 3c. Longitudinal Profile Plots Scaly Bark Creek Mitigation Site (EEP Project No. 94148) UT1 Reach 2 Monitoring Year 0 of 5

Appendix 2. Morphological Summary Data and Plots Figure 3d. Longitudinal Profile Plots Scaly Bark Creek Mitigation Site (EEP Project No. 94148) UT2 Monitoring Year 0 of 5

Appendix 2. Morphological Summary Data and Plots Figure 4a. Cross-Section Plots Scaly Bark Creek Mitigation Site (EEP Project No. 94148) Scaly Bark Reach 1, Cross-Section 1 (Pool) Monitoring Year 0 of 5

River Basin	Yadkin
Watershed	Rocky River
XS ID	1
Drainage Area	2.5 sq.mi
Date	4/2011
Field Crew	Dewberry
	-

Summary Data	
Bankfull Elevation (ft)	424.4
Bankfull Cross-Sectional Area (ft2)	38.63
Bankfull Width (ft)	21.13
Flood Prone Area Elevation (ft)	n/a
Flood Prone Width (ft)	n/a
Max Depth at Bankfull (ft)	3.48
Mean Depth at Bankfull (ft)	1.83
W/D Ratio	11.55
Entrenchment Ratio	n/a
Bank Height Ratio	1
Stream Type	n/a

Cross-Section 1: View Upstream (4/27/2011)

Cross-Section 1: View Downstream (4/27/2011)

0.24	424.71	142.19	423.94
3.63	424.55	142.79	424.32
14.60	424.61	143.61	424.39
23.71	424.71	153.65	424.86
33.66	424.45	159.18	425.34
43.68	424.60	163.69	425.31
48.17	424.35	173.28	425.34
50.18	422.45		
51.15	421.83		
53.14	421.35		
54.57	420.92		
56.77	421.20		
58.74	421.94		
61.07	422.71		
63.76	423.27		
66.96	424.06		
69.85	424.73		
73.63	424.65		
83.66	424.51		
93.63	424.51		
103.67	424.39		
113.70	423.06		
123.59	423.69		
133.70	423.65		

Station Elevation Station Elevation

Appendix 2. Morphological Summary Data and Plots Figure 4b. Cross-Section Plots Scaly Bark Creek Mitigation Site (EEP Project No. 94148) Scaly Bark Reach 1, Cross-Section 2 (Riffle) Monitoring Year 0 of 5

River Basin	Yadkin
Watershed	Rocky River
XS ID	2
Drainage Area	2.5 sq.mi
Date	4/2011
Field Crew	Dewberry
	•
Summary Data	

ounnury Dutu	
Bankfull Elevation (ft)	424.2
Bankfull Cross-Sectional Area (ft2)	24.64
Bankfull Width (ft)	17.86
Flood Prone Area Elevation (ft)	426.4
Flood Prone Width (ft)	200+
Max Depth at Bankfull (ft)	2.2
Mean Depth at Bankfull (ft)	1.38
W/D Ratio	12.95
Entrenchment Ratio	2.2+
Bank Height Ratio	1
Stream Type	C

Cross-Section 2: View Downstream (4/27/2011)

424.5		+	•						
423.5	*					<u> </u>	•		
423									
422									
421.5	20	40	60	80	100	120	140	1.00	

0.27	423.83	121.60	423.87
1.47	423.77	129.29	424.20
11.47	423.84	131.53	423.85
21.50	424.20	137.00	424.14
31.54	424.17	137.34	424.30
41.56	424.30	141.45	424.51
51.51	424.36	151.50	424.92
54.78	424.23	161.48	425.32
56.94	423.46	171.49	425.56
60.13	422.49	181.26	425.58
62.19	422.38		
64.15	422.00		
66.13	422.18		
67.86	422.34		
67.91	422.46		
69.35	422.68		
71.51	423.76		
73.46	424.46		
81.55	424.52		
91.54	424.52		
94.66	424.66		
101.43	424.03		
111.47	423.51		
117.70	423.90		

Station Elevation Station Elevation

Appendix 2. Morphological Summary Data and Plots Figure 4c. Cross-Section Plots Scaly Bark Creek Mitigation Site (EEP Project No. 94148) Scaly Bark Reach 1, Cross-Section 3 (Riffle) Monitoring Year 0 of 5

River Basin	r Basin Yadkin		
Watershed	Rocky River		
XS ID	3		
Drainage Area	2.5 sq.mi		
Date	4/2011		
Field Crew	Dewberry		
Summary Data			
Bankfull Elevation (ft)		420.83	
Bankfull Cross-Section	onal Area (ft2)	25.82	
Bankfull Width (ft)		18.29	

Dalikiuli Cruss-Sectional Area (112)	23.82
Bankfull Width (ft)	18.29
Flood Prone Area Elevation (ft)	423.03
Flood Prone Width (ft)	200+
Max Depth at Bankfull (ft)	2.20
Mean Depth at Bankfull (ft)	1.41
W/D Ratio	12.95
Entrenchment Ratio	2.2+
Bank Height Ratio	1.00
Stream Type	C

Cross-Section 3: View Downstream (4/27/2011)

Station	Elevation	Station	Elevation
0.24	421.56	86.02	419.21
1.86	421.56	88.51	418.63
2.77	421.45	91.62	418.78
5.38	420.88	93.07	418.77
8.35	420.16	94.46	419.07
10.89	419.91	94.58	419.24
12.82	420.38	96.66	420.13
12.83	420.22	98.05	420.67
13.39	420.54	98.92	420.83
18.42	420.83	101.83	421.02
22.19	420.88	102.22	420.91
32.14	420.60	112.18	420.85
35.36	420.74	122.18	420.83
37.55	420.22	132.21	420.73
42.23	420.24	142.14	420.53
49.85	421.18	152.16	420.46
52.20	421.18	162.13	420.43
62.20	421.19	172.13	420.56
72.18	421.21	182.20	420.71
78.67	421.01	192.17	420.61
80.61	420.83	198.78	420.67
82.17	420.23		
82.17	420.23		
84.35	419.21		

Appendix 2. Morphological Summary Data and Plots Figure 4d. Cross-Section Plots Scaly Bark Creek Mitigation Site (EEP Project No. 94148) Scaly Bark Reach 1, Cross-Section 4 (Pool) Monitoring Year 0 of 5

River Basin	Yadkin		
Watershed	Watershed Rocky Rive		
KS ID 4			
Drainage Area 2.5 sq.mi			
Date	4/2011		
Field Crew	Field Crew Dewberry		
Summary Data			
Bankfull Elevation (ft	419.47		
Bankfull Cross-Sectional Area (ft2)		45.17	
Bankfull Width (ft)		24.12	
Flood Prone Area Ele	n/a		
Flood Prone Width (f	n/a		
Max Depth at Bankfull (ft)		3.67	
Mean Depth at Bankf	ull (ft)	1.87	
W/D Ratio		12.88	
Entrenchment Ratio		n/a	
Bank Height Ratio		1.00	
Stream Type		n/a	

Cross-Section 4: View Downstream (4/27/2011)

420.5								
420								
419.5								
419				/				-
418.5			•			· ·		
418								
417.5								
417								
416.5								
416				\mathbb{Z}				
410				*				
415.5 + 0	20	40	60	80	100	120	140	160
				Station (feet)	1			
	- -	0-3/2011			face			

419.85	136.93	419.11
419.83	147.02	419.30
419.79	157.00	419.38
419.77	161.11	419.55
419.53	166.69	419.99
419.50		
419.45		
419.47		
418.72		
417.38		
416.69		
415.86		
415.80		
416.44		
417.09		
417.81		
417.92		
418.79		
419.45		
419.55		
419.33		
419.21		
418.91		
418.90		
	419.85 419.83 419.79 419.77 419.53 419.50 419.45 419.45 419.47 418.72 417.38 416.69 415.86 415.86 415.86 416.44 417.09 417.81 417.92 418.79 419.45 419.45 419.55 419.33 419.21 418.91 418.91	419.85 136.93 419.83 147.02 419.79 157.00 419.77 161.11 419.53 166.69 419.45 164.69 419.47 418.72 419.47 418.72 417.38 416.69 415.86 415.86 415.86 415.80 416.44 417.09 417.81 417.92 418.79 419.45 419.45 419.45 419.45 419.45 419.45 419.45 419.45 419.45 419.21 418.91 418.91 418.90

Station Elevation Station Elevation
Appendix 2. Morphological Summary Data and Plots Figure 4e. Cross-Section Plots Scaly Bark Creek Mitigation Site (EEP Project No. 94148) Scaly Bark Reach 2, Cross-Section 5 (Pool) Monitoring Year 0 of 5

River Basin	Yadkin
Watershed	Rocky River
XS ID	5
Drainage Area	2.5 sq.mi
Date	4/2011
Field Crew	Dewberry

Summary Data	
Bankfull Elevation (ft)	406.67
Bankfull Cross-Sectional Area (ft2)	52.24
Bankfull Width (ft)	26.64
Flood Prone Area Elevation (ft)	n/a
Flood Prone Width (ft)	200+
Max Depth at Bankfull (ft)	4.63
Mean Depth at Bankfull (ft)	1.96
W/D Ratio	13.58
Entrenchment Ratio	2.2+
Bank Height Ratio	1.00
Stream Type	n/a

Cross-Section 5: View Upstream

Cross-Section 5: View Downstream

10.04	410.80	115.25	402.35
17.67	410.35	113.86	404.52
20.05	410.00	115.96	405.56
30.02	408.86	118.03	406.59
36.50	407.86	118.36	406.67
40.07	407.72	120.09	406.58
50.00	407.36	129.92	406.66
60.00	407.02	137.43	407.03
70.00	406.99	140.00	407.51
79.90	406.87	149.95	409.39
89.97	406.74	159.99	410.71
91.70	406.67		
94.05	406.38		
96.00	406.05		
98.01	405.75		
100.02	405.46		
102.07	405.02		
104.04	404.65		
104.60	404.39		
106.03	403.71		
108.05	402.89		
109.93	402.30		
111.25	402.03		
112.01	402.22		

Appendix 2. Morphological Summary Data and Plots Figure 4f. Cross-Section Plots Scaly Bark Creek Mitigation Site (EEP Project No. 94148) Scaly Bark Reach 2, Cross-Section 6 (Riffle) Monitoring Year 0 of 5

River Basin	Yadkin
Watershed	Rocky River
XS ID	6
Drainage Area	2.5 sq.mi
Date	4/2011
Field Crew	Dewberry

Summary Data	
Bankfull Elevation (ft)	406.47
Bankfull Cross-Sectional Area (ft2)	34.33
Bankfull Width (ft)	21.35
Flood Prone Area Elevation (ft)	408.74
Flood Prone Width (ft)	200+
Max Depth at Bankfull (ft)	2.27
Mean Depth at Bankfull (ft)	1.61
W/D Ratio	13.28
Entrenchment Ratio	2.2+
Bank Height Ratio	1.00
Stream Type	C

Cross-Section 6: View Downstream

411								
410	×							
409								
408		×						
407								×
106				*		• •		
400					1			
405								
101								
404						1	1	
404 403 7	27	47	(7	07	107	107	1.47	1.67

7.81 410.97 107.87 406.53 17.83 410.55 117.84 406.44 27.87 409.34 127.88 406.44 37.88 408.22 137.84 406.64 40.74 407.63 147.85 406.84 47.90 407.43 157.94 407.44 57.87 406.97 167.84 408.77 67.86 406.73 174.06 409.66 77.87 406.66 100.06 100.06 77.87 406.66 100.06 100.06 77.87 406.66 100.06 100.06 77.80 405.83 100.06 100.06 89.79 404.96 100.06 100.06	8 0 9 8 9 8 7 5
17.83 410.55 117.84 406.44 27.87 409.34 127.88 406.44 37.88 408.22 137.84 406.64 40.74 407.63 147.85 406.84 47.90 407.43 157.94 407.43 57.87 406.97 167.84 408.7 67.86 406.73 174.06 409.66 77.87 406.66 140.96 140.96 78.80 405.83 159.94 405.83	0 9 8 9 8 7 5
27.87 409.34 127.88 406.4 37.88 408.22 137.84 406.6 40.74 407.63 147.85 406.8 47.90 407.43 157.94 407.4 57.87 406.97 167.84 408.7 67.86 406.73 174.06 409.6 77.87 406.66 85.90 406.47 87.80 405.83 89.79 404.96	9 8 9 8 7 5
37.88 408.22 137.84 406.6 40.74 407.63 147.85 406.8 47.90 407.43 157.94 407.4 57.87 406.97 167.84 408.7 67.86 406.73 174.06 409.6 77.87 406.66 9 9 85.90 406.47 9 9 87.80 405.83 9 9	8 9 8 7 5
40.74 407.63 147.85 406.8 47.90 407.43 157.94 407.4 57.87 406.97 167.84 408.7 67.86 406.73 174.06 409.6 77.87 406.66 406.47 405.83 88.79 405.83 405.83 405.83	9 8 7 5
47.90 407.43 157.94 407.43 57.87 406.97 167.84 408.7 67.86 406.73 174.06 409.6 77.87 406.66	8 7 5
57.87 406.97 167.84 408.7 67.86 406.73 174.06 409.6 77.87 406.66	7 5
67.86 406.73 174.06 409.6 77.87 406.66	5
77.87 406.66 85.90 406.47 87.80 405.83 89.79 404.96	
85.90 406.47 87.80 405.83 89.79 404.96	
87.80 405.83 89.79 404.96	
89.79 404.96	
91.21 404.43	
91.86 404.42	
93.84 404.29	
95.93 404.20	
97.77 404.23	
99.85 404.27	
100.80 404.45	
101.85 404.54	
102.60 404.68	
103.79 404.93	
105.86 405.81	
107.49 406.58	

Appendix 2. Morphological Summary Data and Plots Figure 4g. Cross-Section Plots Scaly Bark Creek Mitigation Site (EEP Project No. 94148) Scaly Bark Reach 2, Cross-Section 7 (Pool) Monitoring Year 0 of 5

River Basin	Yadkin
Watershed	Rocky River
XS ID	7
Drainage Area	2.5 sq.mi
Date	4/2011
Field Crew	Dewberry

Summary Data	
Bankfull Elevation (ft)	404.21
Bankfull Cross-Sectional Area (ft2)	48.29
Bankfull Width (ft)	24.73
Flood Prone Area Elevation (ft)	n/a
Flood Prone Width (ft)	200+
Max Depth at Bankfull (ft)	3.90
Mean Depth at Bankfull (ft)	1.95
W/D Ratio	12.67
Entrenchment Ratio	2.2+
Bank Height Ratio	1.00
Stream Type	n/a

Cross-Section 7: View Upstream

Station	Elevation	Station	Elevation
10.00	405.80	109.97	404.33
12.51	405.80	120.08	404.42
16.14	405.23	130.00	404.13
20.05	404.61	140.00	404.36
30.02	404.34	150.02	404.72
40.06	404.33	160.05	404.62
50.08	404.18	170.08	404.78
60.01	404.17	180.00	405.23
70.04	404.39		
77.11	404.21		
79.99	403.75		
85.75	402.40		
88.00	401.78		
89.97	401.35		
92.06	400.66		
94.03	400.35		
95.13	400.31		
95.93	400.68		
97.67	401.68		
98.04	401.90		
98.46	402.46		
100.08	403.40		
102.09	404.33		
102.58	404.50		

Appendix 2. Morphological Summary Data and Plots Figure 4h. Cross-Section Plots Scaly Bark Creek Mitigation Site (EEP Project No. 94148) Scaly Bark Reach 2, Cross-Section 8 (Riffle) Monitoring Year 0 of 5

River Basin	Yadkin
Watershed	Rocky River
XS ID	8
Drainage Area	2.5 sq.mi
Date	4/2011
Field Crew	Dewberry

Summary Data	
Bankfull Elevation (ft)	404.21
Bankfull Cross-Sectional Area (ft2)	36.79
Bankfull Width (ft)	21.20
Flood Prone Area Elevation (ft)	406.81
Flood Prone Width (ft)	200+
Max Depth at Bankfull (ft)	2.60
Mean Depth at Bankfull (ft)	1.74
W/D Ratio	12.22
Entrenchment Ratio	2.2+
Bank Height Ratio	1.00
Stream Type	C

Station

Elevation

Cross-Section 8: View Upstream

Cross-Section 8: View Downstream

10.00 405.76 149.88 404.18 14.47 405.41 159.92 404.10 19.89 404.51 169.86 403.96 404.27 403.97 29.96 179.99 39.96 404.16 189.97 403.90 49.98 403.79 59.98 404.03 68.52 404.21 403.73 69.90 402.06 73.29 75.59 401.72 77.69 401.90 81.58 401.60 82.38 401.69 83.51 402.06 84.88 402.31 87.64 403.35 89.58 404.21 89.99 404.22 99.88 404.22 109.95 404.08 119.93 403.91 129.96 403.96 139.91 404.10

Station

Elevation

Appendix 2. Morphological Summary Data and Plots Figure 4i. Cross-Section Plots Scaly Bark Creek Mitigation Site (EEP Project No. 94148) UT1 Reach 2, Cross-Section 9 (Pool) Monitoring Year 0 of 5

River Basin	Yadkin
Watershed	Rocky River
XS ID	9
Drainage Area	2.5 sq.mi
Date	Apr-11
Field Crew	Dewberry

Summary Data	
Bankfull Elevation (ft)	425.77
Bankfull Cross-Sectional Area (ft2)	27.95
Bankfull Width (ft)	18.21
Flood Prone Area Elevation (ft)	n/a
Flood Prone Width (ft)	200+
Max Depth at Bankfull (ft)	3.26
Mean Depth at Bankfull (ft)	1.53
W/D Ratio	11.87
Entrenchment Ratio	n/a
Bank Height Ratio	1.00
Stream Type	С

Cross-Section 9: View Upstream (4/27/2011)

Cross-Section 9: View Downstream (4/27/2011)

0.23	426.55	100.53	425.70
0.97	426.51		
3.66	426.08		
6.16	425.69		
10.05	425.84		
20.04	425.93		
29.99	425.84		
39.97	426.03		
50.03	425.83		
60.07	425.91		
62.24	425.77		
63.78	425.64		
65.70	425.08		
67.91	424.31		
69.98	423.36		
71.98	422.51		
72.78	422.54		
74.86	423.36		
76.26	423.79		
77.26	424.53		
79.05	425.28		
80.71	425.86		
90.07	425.81		
99.97	425.66		

Appendix 2. Morphological Summary Data and Plots Figure 4j. Cross-Section Plots Scaly Bark Creek Mitigation Site (EEP Project No. 94148) UT1 Reach 2, Cross-Section 10 (Riffle) Monitoring Year 0 of 5

River Basin	Yadkin
Watershed	Rocky River
XS ID	10
Drainage Area	2.5 sq.mi
Date	Apr-11
Field Crew	Dewberry

Summary Data	
Bankfull Elevation (ft)	425.68
Bankfull Cross-Sectional Area (ft2)	12.39
Bankfull Width (ft)	12.14
Flood Prone Area Elevation (ft)	427.41
Flood Prone Width (ft)	200+
Max Depth at Bankfull (ft)	1.73
Mean Depth at Bankfull (ft)	1.02
W/D Ratio	11.89
Entrenchment Ratio	n/a
Bank Height Ratio	1.00
Stream Type	C

Cross-Section 10: View Upstream (4/27/2011)

Cross-Section 10: View Downstream (4/27/2011)

0.50	426.32	83.84	425.41
1.96	426.20	92.02	425.24
3.63	426.03	101.68	425.20
7.21	425.58		
11.95	425.62		
21.99	425.71		
32.03	425.65		
41.97	425.66		
51.98	425.61		
61.92	425.71		
62.97	425.68		
64.71	425.16		
66.90	424.20		
67.91	423.95		
68.92	423.96		
70.54	424.08		
70.89	424.29		
70.89	424.29		
71.27	424.35		
72.85	424.83		
75.20	425.71		
79.09	425.46		
81.47	425.20		
81.99	425.35		

Appendix 2. Morphological Summary Data and Plots Figure 4k. Cross-Section Plots Scaly Bark Creek Mitigation Site (EEP Project No. 94148) UT2, Cross-Section 11 (Pool) Monitoring Year 0 of 5

River Basin	Yadkin	
Watershed		
XS ID	11	
Drainage Area	2.5 sq.mi	
Date	4/2011	
Field Crew	Dewberry	
Summary Data		
Bankfull Elevation (ft)	416.77
Bankfull Cross-Section	23.28	
Bankfull Width (ft)	15.38	
Flood Prone Area Ele	n/a	
Flood Prone Width (f	n/a	
Max Depth at Bankfu	ll (ft)	2.90
Mean Depth at Bankf	1.51	
W/D Ratio	10.16	
Entrenchment Ratio	n/a	
Bank Height Ratio		1.00
Stream Type		n/a

Cross-Section 11: View Upstream (4/27/2011)

Cross-Section 11: View Downstream (4/27/2011)

otation	Lievation	otation	Lievation
0.45	417.11	100.07	416.89
10.02	417.27	110.00	417.90
19.98	417.24	119.99	419.44
30.08	417.25	124.90	420.41
39.99	417.11		
50.08	417.11		
54.34	417.19		
56.09	416.87		
57.98	416.50		
59.99	415.62		
60.83	415.29		
62.00	415.08		
64.02	414.14		
65.91	413.87		
67.38	414.26		
68.09	415.02		
69.26	415.54		
69.82	415.62		
69.99	415.76		
70.09	415.78		
71.96	416.77		
75.00	417.03		
79.95	417.03		
90.01	417.19		
-			

Appendix 2. Morphological Summary Data and Plots Figure 4I. Cross-Section Plots Scaly Bark Creek Mitigation Site (EEP Project No. 94148) UT2, Cross-Section 12 (Riffle) Monitoring Year 0 of 5

1.00

С

River Basin				
Watershed				
XS ID	12			
Drainage Area	2.5 sq.mi			
Date	4/2011			
Field Crew	Dewberry			
Summary Data				
Bankfull Elevation (ft	416.69			
Bankfull Cross-Sectional Area (ft2)		11.40		
Bankfull Width (ft)	12.99			
Flood Prone Area Ele	418.16			
Flood Prone Width (f	t)	200+		
Max Depth at Bankfu	ll (ft)	1.46		
Mean Depth at Bankf	ull (ft)	0.88		
W/D Ratio		14.82		
Entrenchment Ratio		2.2+		

Cross-Section 12: View Downstream (4/27/2011)

Station Elevation Station Elevation 0.14 417.09 129.68 419.98 417.34 9.72 19.67 417.21 29.64 416.99 39.70 416.80 49.73 416.74 50.32 416.69 51.66 416.31 53.72 415.80 55.33 415.28 55.72 415.33 57.33 415.23 57.71 415.36 59.23 415.35 59.28 415.36 59.72 415.57 416.23 61.75 63.71 416.81 416.74 69.67 79.75 416.61 89.61 416.79 416.78 99.67 417.34 109.70 119.73 418.70

Bank Height Ratio

Stream Type

Appendix 2. Morphological Summary Data and Plots Figure 5a. Reachwide and Cross-Section Pebble Count Plots Scaly Bark Creek Mitigation Site (EEP Project No. 94148) Scaly Bark Creek Reach 1, Reachwide Monitoring Year 0 of 5

Particle Class		Diameter (mm)		Particle Count			Scaly Bark Reach 1 Summary	
Tart			max	Riffle	Pool	Total	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	2	26	28	28	28
	Very fine	0.062	0.125	1	10	11	11	39
^	Fine	0.125	0.250		1	1	1	40
a star	Medium	0.250	0.500	2		2	2	42
24	Coarse	0.5	1.0		5	5	5	47
	Very Coarse	1.0	2.0		1	1	1	48
	Very Fine	2.0	2.8					48
	Very Fine	2.8	4.0					48
	Fine	4.0	5.7		1	1	1	49
	Fine	5.7	8.0	5	6	11	11	60
505	Medium	8.0	11.3	1		1	1	61
and a second	Medium	11.3	16.0	3		3	3	64
•	Coarse	16.0	22.6	2		2	2	66
	Coarse	22.6	32	7		7	7	73
	Very Coarse	32	45	5		5	5	78
	Very Coarse	45	64	4		4	4	82
	Small	64	90	6		6	6	88
-848	Small	90	128	6		6	6	94
0 ¹⁵	Large	128	180	5		5	5	99
•	Large	180	256					99
	Small	256	362	1		1	1	100
DER	Small	362	512					100
30 ¹¹	Medium	512	1024					100
y	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Reachwide					
Channel	Channel materials (mm)				
D ₁₆ =	Silt/Clay				
D ₃₅ =	Silt/Clay				
D ₅₀ =	5.78				
D ₈₄ =	71.70				
D ₉₅ =	137.03				
D ₁₀₀ =	362.00				

Appendix 2. Morphological Summary Data and Plots Figure 5b. Reachwide and Cross-Section Substrate Plots Scaly Bark Creek Mitigation Site (EEP Project No. 94148) Scaly Bark Creek Reach 1, Cross-Section 2 (Riffle) Monitoring Year 0 of 5

Postiolo Class		Diameter (mm)		Particle Count	Cross-Section 2 Summary	
Parti	Particle Class		max	Total	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	2	2	2
	Very fine	0.062	0.125	2	2	4
_	Fine	0.125	0.250			4
, ath	Medium	0.250	0.500	4	4	8
94	Coarse	0.5	1.0			8
	Very Coarse	1.0	2.0			8
	Very Fine	2.0	2.8			8
	Very Fine	2.8	4.0	8	8	16
	Fine	4.0	5.7	4	4	20
	Fine	5.7	8.0	4	4	24
Å	Medium	8.0	11.3	6	6	30
and the second s	Medium	11.3	16.0	8	8	38
·	Coarse	16.0	22.6	10	10	48
	Coarse	22.6	32	4	4	52
	Very Coarse	32	45	8	8	60
	Very Coarse	45	64	6	6	66
	Small	64	90	6	6	72
ave	Small	90	128	10	10	82
.0 ⁸⁹	Large	128	180	12	12	94
v	Large	180	256	2	2	96
	Small	256	362	4	4	100
DER	Small	362	512			100
aOUV	Medium	512	1024			100
ÿ.	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

Cro	Cross-Section 2					
Channe	Channel materials (mm)					
D ₁₆ =	$D_{16} = 4.00$					
D ₃₅ =	13.90					
D ₅₀ =	26.89					
D ₈₄ =	135.48					
D ₉₅ =	214.66					
D ₁₀₀ =	362.00					

Appendix 2. Morphological Summary Data and Plots Figure 5c. Reachwide and Cross-Section Substrate Plots Scaly Bark Creek Mitigation Site (EEP Project No. 94148) Scaly Bark Creek Reach 1, Cross-Section 3 (Riffle) Monitoring Year 0 of 5

Particle Class		Diamet	er (mm)	Particle Count	Cross-Section 3 Summary		
		min	max	Total	Class Percentage	Percent Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062	6	6	6	
	Very fine	0.062	0.125			6	
^	Fine	0.125	0.250			6	
, NTN	Medium	0.250	0.500			6	
94	Coarse	0.5	1.0			6	
	Very Coarse	1.0	2.0			6	
	Very Fine	2.0	2.8			6	
	Very Fine	2.8	4.0			6	
	Fine	4.0	5.7	6	6	12	
	Fine	5.7	8.0	2	2	14	
.e ^t	Medium	8.0	11.3	6	6	20	
a l	Medium	11.3	16.0	14	14	34	
v	Coarse	16.0	22.6	2	2	36	
	Coarse	22.6	32	18	18	54	
	Very Coarse	32	45	10	10	64	
	Very Coarse	45	64	8	8	72	
	Small	64	90	10	10	82	
ali	Small	90	128	8	8	90	
OBU	Large	128	180	4	4	94	
v	Large	180	256	6	6	100	
	Small	256	362			100	
OER	Small	362	512			100	
OUL	Medium	512	1024			100	
₿ ^v	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	100	100	100	

Cro	Cross-Section 3					
Channe	Channel materials (mm)					
D ₁₆ =	D ₁₆ = 8.90					
D ₃₅ =	19.02					
D ₅₀ =	29.62					
D ₈₄ =	98.28					
D ₉₅ =	190.88					
D ₁₀₀ =	256.00					

Appendix 2. Morphological Summary Data and Plots Figure 5d. Reachwide and Cross-Section Pebble Count Plots Scaly Bark Creek Mitigation Site (EEP Project No. 94148) Scaly Bark Creek Reach 2, Reachwide Monitoring Year 0 of 5

Particle Class		Diamet	er (mm)	Particle Count			Scaly Bark Reach 2 Summary	
		min	max	Riffle	Pool	Total	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	5	22	27	27	27
	Very fine	0.062	0.125					27
^	Fine	0.125	0.250					27
and the second sec	Medium	0.250	0.500		1	1	1	28
5 4	Coarse	0.5	1.0					28
	Very Coarse	1.0	2.0					28
	Very Fine	2.0	2.8					28
	Very Fine	2.8	4.0					28
	Fine	4.0	5.7		1	1	1	29
	Fine	5.7	8.0	1	6	7	7	36
ee ^s	Medium	8.0	11.3		2	2	2	38
	Medium	11.3	16.0	2	4	6	6	44
2	Coarse	16.0	22.6	2	5	7	7	51
	Coarse	22.6	32	6	3	9	9	60
	Very Coarse	32	45	3		3	3	63
	Very Coarse	45	64	8	3	11	11	74
	Small	64	90	10	3	13	13	87
alt	Small	90	128	5		5	5	92
1082	Large	128	180	6		6	6	98
·	Large	180	256					98
<i>.</i>	Small	256	362	2		2	2	100
DER	Small	362	512					100
adult	Medium	512	1024					100
······ y	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Reachwide					
Channel	Channel materials (mm)				
D ₁₆ = Silt/Clay					
D ₃₅ =	7.60				
D ₅₀ =	21.51				
D ₈₄ =	83.19				
D ₉₅ =	151.79				
D ₁₀₀ =	362				

Appendix 2. Morphological Summary Data and Plots Figure 5e. Reachwide and Cross-Section Substrate Plots Scaly Bark Creek Mitigation Site (EEP Project No. 94148) Scaly Bark Reach 2, Cross-Section 6 (Riffle) Monitoring Year 0 of 5

Particle Class		Diamet	er (mm)	Particle Count	Cross-Section 6 Summary		
		min	max	Total	Class Percentage	Percent Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062			0	
	Very fine	0.062	0.125			0	
<u>_</u>	Fine	0.125	0.250			0	
, ath	Medium	0.250	0.500			0	
91.	Coarse	0.5	1.0			0	
	Very Coarse	1.0	2.0			0	
	Very Fine	2.0	2.8			0	
	Very Fine	2.8	4.0			0	
	Fine	4.0	5.7			0	
	Fine	5.7	8.0			0	
Set.	Medium	8.0	11.3			0	
es.	Medium	11.3	16.0	4	4	4	
· ·	Coarse	16.0	22.6	4	4	8	
	Coarse	22.6	32	22	22	30	
	Very Coarse	32	45	20	20	50	
	Very Coarse	45	64	22	22	72	
	Small	64	90	19	19	91	
are	Small	90	128	6	6	97	
OBL	Large	128	180	1	1	98	
v	Large	180	256	2	2	100	
•	Small	256	362			100	
DEX	Small	362	512			100	
ROUL	Medium	512	1024			100	
V	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	100	100	100	

Cro	Cross-Section 6						
Channe	Channel materials (mm)						
D ₁₆ =	D ₁₆ = 25.65						
D ₃₅ =	34.85						
D ₅₀ =	45.00						
D ₈₄ =	79.38						
D ₉₅ =	113.82						
D ₁₀₀ =	256.00						

Appendix 2. Morphological Summary Data and Plots Figure 5f. Reachwide and Cross-Section Substrate Plots Scaly Bark Creek Mitigation Site (EEP Project No. 94148) Scaly Bark Reach 2, Cross-Section 8 (Riffle) Monitoring Year 0 of 5

Particle Class		Diamet	er (mm)	Particle Count	Cross-S Sum	ection 8 mary
		min	max	Total	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062	14	14	14
	Very fine	0.062	0.125			14
^	Fine	0.125	0.250			14
. Tr	Medium	0.250	0.500			14
51	Coarse	0.5	1.0			14
	Very Coarse	1.0	2.0			14
	Very Fine	2.0	2.8			14
	Very Fine	2.8	4.0	2	2	16
	Fine	4.0	5.7	4	4	20
	Fine	5.7	8.0	4	4	24
Å	Medium	8.0	11.3	8	8	32
	Medium	11.3	16.0	6	6	38
v	Coarse	16.0	22.6	12	12	50
	Coarse	22.6	32	20	20	70
	Very Coarse	32	45	6	6	76
	Very Coarse	45	64	14	14	90
	Small	64	90	4	4	94
a VE	Small	90	128	2	2	96
.0 ⁸⁴	Large	128	180	3	3	99
v	Large	180	256			99
	Small	256	362			99
DER	Small	362	512			99
aOUL	Medium	512	1024	1	1	100
₩.	Large/Very Large	1024	2048			100
BEDROCK	Bedrock	2048	>2048			100
			Total	100	100	100

Cro	Cross-Section 8					
Channe	Channel materials (mm)					
D ₁₆ =	D ₁₆ = 4.00					
D ₃₅ =	13.27					
D ₅₀ =	22.60					
D ₈₄ =	55.03					
D ₉₅ =	107.33					
D ₁₀₀ =	1024.00					

Appendix 2. Morphological Summary Data and Plots Figure 5g. Reachwide and Cross-Section Pebble Count Plots Scaly Bark Creek Mitigation Site (EEP Project No. 94148) UT1 Reach 2, Reachwide Monitoring Year 0 of 5

Particle Class		Diamet	er (mm)	Part	Particle Count UT1 Reach 2 Summ			2 Summary
Parti	Tarticic Glass		max	Difflo	Deel	Tatal	Class	Percent
SILT/CLAV			0.062	Killie	16	16	reicentage	
SIL1/CLAI	Siit/Ciay	0.000	0.002		10	10	10	10
-1P	Very fine	0.062	0.125					10
	Fine	0.125	0.250		2	2		10
sM	Medium	0.250	0.500		2	2	2	18
	Coarse	0.5	1.0		2	2	2	20
	Very Coarse	1.0	2.0		2	2	2	22
	Very Fine	2.0	2.8					22
	Very Fine	2.8	4.0					22
	Fine	4.0	5.7					22
	Fine	5.7	8.0			_		22
SV	Medium	8.0	11.3		5	5	5	27
0 ^{ger}	Medium	11.3	16.0	1	7	8	8	35
	Coarse	16.0	22.6		1	1	1	36
	Coarse	22.6	32	6	4	10	10	46
	Very Coarse	32	45	4	5	9	9	55
	Very Coarse	45	64	15	2	17	17	72
	Small	64	90	4	2	6	6	78
.svs	Small	90	128	12	2	14	14	92
.0 ^b .	Large	128	180	5		5	5	97
ÿ	Large	180	256	2		2	2	99
	Small	256	362	1		1	1	100
DER	Small	362	512					100
OUL	Medium	512	1024					100
v	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Cross-Section 10							
Channel	Channel materials (mm)						
D ₁₆ =	D ₁₆ = 0.25						
D ₃₅ =	16.00						
D ₅₀ =	37.24						
D ₈₄ =	104.66						
D ₉₅ = 157.05							
D ₁₀₀ =	362						

Appendix 2. Morphological Summary Data and Plots Figure 5h. Reachwide and Cross-Section Substrate Plots Scaly Bark Creek Mitigation Site (EEP Project No. 94148) UT1 Reach 2, Cross-Section 10 (Riffle) Monitoring Year 0 of 5

Particle Class		Diamet	er (mm)	Particle Count	Cross-Section 10 Summary		
		min	max	Total	Class Percentage	Percent Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062			0	
	Very fine	0.062	0.125			0	
`	Fine	0.125	0.250			0	
, ath	Medium	0.250	0.500			0	
94	Coarse	0.5	1.0			0	
	Very Coarse	1.0	2.0			0	
	Very Fine	2.0	2.8			0	
	Very Fine	2.8	4.0			0	
	Fine	4.0	5.7			0	
	Fine	5.7	8.0			0	
Ś	Medium	8.0	11.3			0	
e de la companya de	Medium	11.3	16.0			0	
c	Coarse	16.0	22.6	6	6	6	
	Coarse	22.6	32	14	14	20	
	Very Coarse	32	45	24	24	44	
	Very Coarse	45	64	30	30	74	
	Small	64	90	14	14	88	
art	Small	90	128	10	10	98	
.0 ⁸⁹	Large	128	180	2	2	100	
v	Large	180	256			100	
_	Small	256	362			100	
DEK	Small	362	512			100	
ROUL	Medium	512	1024			100	
v.	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	100	100	100	

	Cross-Section 10			
Ch	Channel materials (mm)			
Γ	$O_{16} =$	28.97		
Γ) ₃₅ =	39.60		
Γ	$O_{50} =$	48.28		
Γ	$O_{84} =$	81.65		
Γ	$D_{95} =$	115.16		
D	100 =	180.00		

Appendix 2. Morphological Summary Data and Plots Figure 5i. Reachwide and Cross-Section Pebble Count Plots Scaly Bark Creek Mitigation Site (EEP Project No. 94148) UT2, Reachwide Monitoring Year 0 of 5

Particle Class		Diameter (mm)		Particle Count			UT2 Summary	
		min	max	Riffle	Pool	Total	Class Percentage	Percent Cumulative
SILT/CLAY	Silt/Clay	0.000	0.062		20	20	20	20
	Very fine	0.062	0.125					20
^	Fine	0.125	0.250		1	1	1	21
and the second sec	Medium	0.250	0.500		3	3	3	24
54	Coarse	0.5	1.0		1	1	1	25
	Very Coarse	1.0	2.0	2		2	2	27
	Very Fine	2.0	2.8					27
	Very Fine	2.8	4.0					27
	Fine	4.0	5.7		1	1	1	28
	Fine	5.7	8.0	1	4	5	5	33
	Medium	8.0	11.3	2	5	7	7	40
(SN	Medium	11.3	16.0	2	7	9	9	49
	Coarse	16.0	22.6	1	5	6	6	55
	Coarse	22.6	32	8	2	10	10	65
	Very Coarse	32	45	7		7	7	72
	Very Coarse	45	64	6	1	7	7	79
CORRIE	Small	64	90	10		10	10	89
	Small	90	128	3		3	3	92
	Large	128	180	6		6	6	98
	Large	180	256	1		1	1	99
BOULDER	Small	256	362					99
	Small	362	512	1		1	1	100
	Medium	512	1024					100
Ŷ	Large/Very Large	1024	2048					100
BEDROCK	Bedrock	2048	>2048					100
			Total	50	50	100	100	100

Reachwide			
Channel materials (mm)			
D ₁₆ =	Silt/Clay		
D ₃₅ =	8.76		
D ₅₀ =	16.95		
D ₈₄ =	75.89		
D ₉₅ =	151.79		
D ₁₀₀ =	512		

Appendix 2. Morphological Summary Data and Plots Figure 5j. Reachwide and Cross-Section Substrate Plots Scaly Bark Creek Mitigation Site (EEP Project No. 94148) UT2, Cross-Section 12 (Riffle) Monitoring Year 0 of 5

Particle Class		Diamet	er (mm)	Particle Count	Cross-Section 12 Summary		
		min	max	Total	Class Percentage	Percent Cumulative	
SILT/CLAY	Silt/Clay	0.000	0.062			0	
SAM	Very fine	0.062	0.125			0	
	Fine	0.125	0.250			0	
	Medium	0.250	0.500			0	
	Coarse	0.5	1.0			0	
	Very Coarse	1.0	2.0	2	2	2	
	Very Fine	2.0	2.8			2	
	Very Fine	2.8	4.0			2	
	Fine	4.0	5.7			2	
	Fine	5.7	8.0			2	
	Medium	8.0	11.3			2	
	Medium	11.3	16.0	8	8	10	
	Coarse	16.0	22.6	14	14	24	
	Coarse	22.6	32	20	20	44	
	Very Coarse	32	45	24	24	68	
	Very Coarse	45	64	12	12	80	
CORRE	Small	64	90	4	4	84	
	Small	90	128	8	8	92	
	Large	128	180	6	6	98	
	Large	180	256	2	2	100	
BOULDER	Small	256	362			100	
	Small	362	512			100	
	Medium	512	1024			100	
	Large/Very Large	1024	2048			100	
BEDROCK	Bedrock	2048	>2048			100	
			Total	100	100	100	

Cross-Section 12					
Channe	Channel materials (mm)				
D ₁₆ =	18.55				
D ₃₅ =	27.36				
D ₅₀ =	34.85				
D ₈₄ =	90.00				
$D_{95} =$	151.79				
D ₁₀₀ =	256.00				

Stream Photographs

Photo Point 1 - looking upstream (04/27/2011)

Photo Point 1 – looking downstream (04/27/2011)

Photo Point 3 – looking upstream (04/27/2011)

Photo Point 3 – looking downstream (04/27/2011)

Photo Point 6 – looking upstream (04/27/2011)

Photo Point 6 - looking downstream (04/27/2011)

Photo Point 7 – looking upstream (04/27/2011)

Photo Point 7 – looking downstream (04/27/2011)

Photo Point 18 – looking upstream (04/27/2011)

Photo Point 18 - looking downstream (04/27/2011)

Photo Point 20 – looking upstream (04/27/2011)
Photo Point 20 – looking downstream (04/27/2011)

Image: Constraint of the stream of t

Photo Point 21 – looking upstream (04/27/2011)

Photo Point 21 – looking downstream (04/27/2011)

Photo Point 24 – looking upstream (04/19/2011)

Photo Point 24 - looking downstream (04/19/2011)

Photo Point 28 - looking upstream (04/19/2011)

Photo Point 28 - looking downstream (04/19/2011)

Photo Point 30 – looking upstream (04/19/2011)

Photo Point 30 - looking downstream (04/19/2011)

APPENDIX 3. Vegetation Plot Data
Appendix 3. Vegetation Assessment Table 7a. Planted and Total Stem Counts (Species by Plot with Annual Means) Scaly Bark Creek Mitigation Site (EEP Project No. 94148) Scaly Bark Creek Reaches 1 and 2 Monitoring Year 0 of 5

			Current Data (MY0-4/2011)														Annual Means					
			Ple	ot 1	Plo	ot 2	Plo	ot 3	Plo	ot 4	Ple	ot 5	Plo	ot 6	Plo	ot 7	Plo	ot 8	Plo	ot 9	Curren	it Mean
Species	Common Name	Туре	Р	Т	Р	Т	Р	Т	Р	Т	Р	Т	Р	Т	Р	Т	Р	Т	Р	Т	Р	Т
Acer floridanum	Southern Sugar Maple	Т	3	3	3	3	2	2	3	3	3	3	1	1	2	2	5	5	3	3	2.78	2.78
Alnus serrulata	Tag Alder	T/S	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0.11	0.11
Betula nigra	River Birch	Т	1	1	2	2	2	2	1	1	1	1	0	0	3	3	1	1	1	1	1.33	1.33
Carya sp.	Hickory	Т	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00	0.00
Carya cordiformis	Bitternut Hickory	Т	1	1	0	0	0	0	0	0	0	0	1	1	3	3	2	2	0	0	0.78	0.78
Carya ovata	Shagbark Hickory	Т	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	2	0.22	0.22
Celtis occidentalis	Hackberry	T/S	0	0	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0.22	0.22
Cornus sp.	Dogwood	S	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.22	0.22
Cornus amomum	Silky Dogwood	S	1	1	1	1	2	2	0	0	1	1	1	1	1	1	0	0	2	2	1.00	1.00
Cornus florida	Flowering Dogwood	T/S	2	2	4	4	2	2	5	5	4	4	2	2	1	1	2	2	2	2	2.67	2.67
Ilex opaca	American Holly	T/S	2	2	2	2	0	0	2	2	2	2	2	2	1	1	4	4	3	3	2.00	2.00
Liquidambar styraciflua	Sweet Gm	Т	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00	0.00
Liriodendron tulipifera	Tulip Poplar	Т	6	6	6	6	4	4	3	3	5	5	4	4	0	0	0	0	0	0	3.11	3.11
Platanus occidentalis	Sycamore	Т	0	0	1	1	2	2	0	0	1	1	1	1	0	0	0	0	1	1	0.67	0.67
Quercus michauxii	Swamp Chestnut Oak	Т	2	2	4	4	6	6	8	8	4	4	0	0	2	2	1	1	0	0	3.00	3.00
Unknown sp.	Unknown		3	3	0	0	0	0	0	0	0	0	3	3	1	1	1	1	0	0	0.89	0.89
	Plot Are	ea (acres)									0.0	247										
	ies Count	10	10	8	8	7	7	6	6	9	9	9	9	9	9	7	7	7	7	8	8	
	m Count	23	23	23	23	20	20	22	22	22	22	16	16	15	15	16	16	14	14	19	19	
Stems per Acre				931	931	931	810	810	891	891	891	891	648	648	607	607	648	648	567	567	769	769

Type=Shrub or Tree P = Planted

T = Total

Appendix 3. Vegetation Assessment Table 7b. Planted and Total Stem Counts (Species by Plot with Annual Means) Scaly Bark Creek Mitigation Site (EEP Project No. 94148) UT1, UT1a, UT1b Monitoring Year 0 of 5

			Current Data (MY0-3/2011) A Plat 10 Plat 12 Plat 14 Plat 15 Plat 16 Plat 18 Plat 10 Plat 20 Plat 21														Annua	Annual Means										
			Plo	t 10	Plo	t 11	Plo	t 12	Plo	t 13	Plo	t 14	Plo	t 15	Plo	ot 16	Plo	t 17	Plo	t 18	Plo	ot 19	Plo	t 20	Plo	t 21	Currer	ıt Mean
Species	Common Name	Туре	Р	Т	Р	Т	Р	Т	Р	Т	Р	Т	Р	Т	Р	Т	Р	Т	Р	Т	Р	Т	Р	Т	Р	Т	Р	Т
Acer floridanum	Southern Sugar Maple	Т	4	4	4	4	4	4	5	5	3	3	3	3	4	4	4	4	11	11	5	5	4	4	4	4	4.58	4.58
Alnus serrulata	Tag Alder	T/S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00	0.00
Betula nigra	River Birch	Т	0	0	0	0	0	0	0	0	4	4	3	3	1	1	1	1	0	0	0	0	0	0	0	0	0.75	0.75
Carya sp.	Hickory	Т	0	0	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0	1	1	0	0	0	0	0.25	0.25
Carya cordiformis	Bitternut Hickory	Т	1	1	1	1	1	1	1	1	0	0	2	2	1	1	1	1	0	0	0	0	1	1	1	1	0.83	0.83
Carya ovata	Shagbark Hickory	Т	1	1	1	1	1	1	0	0	0	0	0	0	1	1	1	1	0	0	1	1	1	1	1	1	0.67	0.67
Celtis occidentalis	Hackberry	T/S	1	1	1	1	1	1	1	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	1	1	0.50	0.50
Cornus sp.	Dogwood	S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00	0.00
Cornus amomum	Silky Dogwood	S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00	0.00
Cornus florida	Flowering Dogwood	T/S	5	5	6	6	5	5	5	5	3	3	5	5	6	6	6	6	5	5	10	10	4	4	6	6	5.50	5.50
Ilex opaca	American Holly	T/S	4	4	3	3	4	4	4	4	2	2	2	2	4	4	4	4	5	5	5	5	4	4	3	3	3.67	3.67
Liquidambar styraciflua	Sweet Gm	Т	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.08	0.08
Liriodendron tulipifera	Tulip Poplar	Т	6	6	6	6	7	7	8	8	6	6	6	6	6	6	6	6	0	0	1	1	5	5	6	6	5.25	5.25
Platanus occidentalis	Sycamore	Т	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00	0.00
Quercus michauxii	Swamp Chestnut Oak	Т	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00	0.00
Unknown sp.	Unknown		0	0	0	0	0	0	0	0	2	2	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0.25	0.25
	Plot Area	(acres)									0.0	247																
Species Coun				8	7	7	7	7	6	6	7	7	9	9	7	7	7	7	3	3	6	6	6	6	7	7	7	7
	Stem	Count	23	23	22	22	23	23	24	24	21	21	24	24	23	23	23	23	21	21	23	23	19	19	22	22	22	22
Stems per Acr			931	931	891	891	931	931	972	972	850	850	972	972	931	931	931	931	850	850	931	931	769	769	891	891	904	904

Type=Shrub or Tree P = Planted

T = Total

Appendix 3. Vegetation Assessment Table 7c. Planted and Total Stem Counts (Species by Plot with Annual Means) Scaly Bark Creek Mitigation Site (EEP Project No. 94148) UT2, UT3, UT4 Monitoring Year 0 of 5

			Current Data (MY0-4/2011)												Annual Means					
			Plo	t 22	Plo	t 23	Plo	t 24	Plo	t 25	Plo	t 26	Plo	t 27	Plo	t 28	Plo	t 29	Curren	t Mean
Species	Common Name	Туре	Р	T P		Т	Р	Т	Р	Т	Р	Т	Р	Т	Р	Т	Р	Т	Р	Т
Acer floridanum	Southern Sugar Maple	Т	2	2	1	1	6	6	4	4	2	2	3	3	3	3	3	3	3.00	3.00
Alnus serrulata	Tag Alder	T/S	2	2	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0.50	0.50
Betula nigra	River Birch	Т	3	3	3	3	0	0	0	0	4	4	0	0	1	1	0	0	1.38	1.38
Carya sp.	Hickory	Т	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00	0.00
Carya cordiformis	Bitternut Hickory	Т	0	0	0	0	1	1	1	1	0	0	0	0	2	2	4	4	1.00	1.00
Carya ovata	Shagbark Hickory	Т	0	0	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0.25	0.25
Celtis occidentalis	Hackberry	T/S	0	0	0	0	0	0	0	0	3	3	0	0	1	1	0	0	0.50	0.50
Cornus sp.	Dogwood	S	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.00	0.00
Cornus amomum	Silky Dogwood	S	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0.25	0.25
Cornus florida	Flowering Dogwood	T/S	3	3	0	0	5	5	7	7	1	1	9	9	2	2	3	3	3.75	3.75
Ilex opaca	American Holly	T/S	2	2	2	2	4	4	4	4	4	4	3	3	4	4	6	6	3.63	3.63
Liquidambar styraciflua	Sweet Gm	Т	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0.13	0.13
Liriodendron tulipifera	Tulip Poplar	Т	4	4	2	2	4	4	4	4	1	1	0	0	1	1	0	0	2.00	2.00
Platanus occidentalis	Sycamore	Т	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0.13	0.13
Quercus michauxii	Swamp Chestnut Oak	Т	4	4	3	3	0	0	0	0	0	0	0	0	0	0	0	0	0.88	0.88
Unknown sp.	Unknown		0	0	1	1	0	0	0	0	0	0	0	0	1	1	0	0	0.25	0.25
	Plot Are	ea (acres)								0.0	247									
	Spec	ies Count	8	8	8	8	6	6	6	6	7	7	3	3	8	8	4	4	6	6
	Ste	m Count	22	22	15	15	21	21	21	21	16	16	15	15	15	15	16	16	18	18
	Stems	per Acre	891	891	607	607	850	850	850	850	648	648	607	607	607	607	648	648	714	714

Type=Shrub or Tree P = Planted

T = Total

Appendix 3. Vegetation Assessment Table 8. CVS Vegetation Tables - Metadata Scaly Bark Creek Mitigation Site (EEP Project No. 94148) Monitoring Year 0 of 5

Report Prepared By	Kirsten Gimbert
Date Prepared	5/2/2011 9:30
database name	CVS_EEP_DataEntry_v204.mdb
database location	Q:\ActiveProjects\005-02122 Scaly Bark Creek Mitigation Project\Monitoring\Baseline Monitoring\Vegetation Assessment
DESCRIPTION OF WORKSHEETS I	N THIS DOCUMENT
Metadata	This worksheet, which is a summary of the project and the project data.
Plots	List of plots surveyed.
Vigor	Frequency distribution of vigor classes.
Vigor by Spp	Frequency distribution of vigor classes listed by species.
Damage	List of most frequent damage classes with number of occurrences and percent of total stems impacted by each.
Damage by Spp	Damage values tallied by type for each species.
Damage by Plot	Damage values tallied by type for each plot.
Stem Count by Plot and Spp	Unknown
PROJECT SUMMARY	
Project Code	94148
project Name	Scaly Bark Creek
Description	Scaly Bark Creek Mitigation Site
length (ft)	
stream-to-edge width (ft)	
area (sq m)	
Required Plots (calculated)	
Sampled Plots	29

Appendix 3. Vegetation Assessment Table 9. CVS Vegetation Tables - Vigor by Species Scaly Bark Creek Stream Restoration (EEP Project No. 94148) Monitoring Year 0 of 5

	Species	4	3	2	1	0	Missing
	Acer floridanum	104					
	Alnus serrulata	5					
	Betula nigra	31	1				
	Carya cordiformis	24	1				
	Carya ovata	12					
	Celtis occidentalis	12					
	Cornus amomum	11					
	Cornus florida	118	1	1			
	Liquidambar styraciflua	2					
	Quercus michauxii	27	5	2			
	Ilex opaca	32	58	1			
	Cornus	2					
	Carya	3					
	Unknown	104	1	2			
	Platanus occidentalis	7					
	Unknown	11	2				
TOT:	16	505	69	6			

vigor	Count	Percent
2	6	1
3	69	11.9
4	505	87.1

Appendix 3. Vegetation Assessment Table 10. CVS Vegetation Tables - Damage by Species Scaly Bark Creek Mitigation Site (EEP Project No. 94148) Monitoring Year 0 of 5

	Green Contraction of the second	41D	Particle Sarries	druten Sterns	Ly views	
	Acer floridanum	104	104			
	Alnus serrulata	5	5			
	Betula nigra	32	31	1		
	Carya	3	3			
	Carya cordiformis	25	24		1	
	Carya ovata	12	12			
	Celtis occidentalis	12	12			
	Cornus	2	2			
	Cornus amomum	11	11			
	Cornus florida	120	117		3	
	Ilex opaca	91	31		60	
	Liquidambar styraciflua	2	2			
	Liriodendron tulipifera	107	104		3	
	Platanus occidentalis	7	7			
	Unknown	34	27	2	5	
	Unknown	13	11	1	1	
TOT:	16	580	503	4	73	

Damage	Count	Percent Of Stems
(no damage)	503	86.7
Site Too Dry	73	12.6
[Enter other damage]	4	0.7

Appendix 3. Vegetation Assessment Table 11. CVS Vegetation Tables - Stem Count by Plot and Species Scaly Bark Creek Mitigation Site (EEP Project No. 94148) Monitoring Year 0 of 5

	Species.	Tor.	*n. Stems	av.	an stems		11. 11.	201.3 11.					r"or 8 11	1101 0	01. DI-	11	11 11 11	113 113	10-11	Die 15	Die. 16	11	118 1160	01 10	07.Ju	15.00	11. 11.	10-53 11-53	10.24	nu 25 Die	201 26 DL	11.27	11.28	
	Acer floridanum	104	29	4	3	3	2	3	3	1	2	5	3	4	4	4	5	3	3	4	4	11	5	4	4	2	1	6	4	2	3	3	3	
	Alnus serrulata	5	3	2					1																	2	2							
	Betula nigra	32	16	2	1	2	2	1	1		3	1	1					4	3	1	1					3	3			4		1		
	Carya	3	3	1														1	1				1											
	Carya cordiformis	25	17	1	1					1	3	2		1	1	1	1		2	1	1			1	1			1	1			2	4	
	Carya ovata	12	11	1									2	1	1	1				1	1		1	1	1			1	1					
	Celtis occidentalis	12	10	1						1	1			1	1	1	1		1						1					3		1		
	Cornus	2	1	2	2																													
	Cornus amomum	11	8	1	1	1	2		1	1	1		2													2								
	Cornus florida	120	28	4	2	4	2	5	4	2	1	2	2	5	6	5	5	3	5	6	6	5	10	4	6	3		5	7	1	9	2	3	
	Ilex opaca	91	28	3	2	2		2	2	2	1	4	3	4	3	4	4	2	2	4	4	5	5	4	3	2	2	4	4	4	3	4	6	
	Liquidambar styraciflua	2	2	1										1																1				
	Liriodendron tulipifera	107	23	5	6	6	4	3	5	4				6	6	7	8	6	6	6	6		1	5	6	4	2	4	4	1		1		
	Platanus occidentalis	7	6	1		1	2		1	1			1														1							
	Quercus michauxii	34	9	4	2	4	6	8	4		2	1														4	3							
	Unknown	13	8	2	3					3	1	1						2	1								1					1		
TOT:	16	580	16		23	23	20	22	22	16	15	16	14	23	22	23	24	21	24	23	23	21	23	19	22	22	15	21	21	16	15	15	16	

Vegetation Photographs

APPENDIX 4. As-Built Plan Sheets